ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resid GIF version

Theorem resid 4999
Description: Any relation restricted to the universe is itself. (Contributed by NM, 16-Mar-2004.)
Assertion
Ref Expression
resid (Rel 𝐴 → (𝐴 ↾ V) = 𝐴)

Proof of Theorem resid
StepHypRef Expression
1 ssv 3201 . 2 dom 𝐴 ⊆ V
2 relssres 4980 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ V) → (𝐴 ↾ V) = 𝐴)
31, 2mpan2 425 1 (Rel 𝐴 → (𝐴 ↾ V) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2760  wss 3153  dom cdm 4659  cres 4661  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-dm 4669  df-res 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator