| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restidsing | GIF version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| restidsing | ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4992 | . 2 ⊢ Rel ( I ↾ {𝐴}) | |
| 2 | relxp 4788 | . 2 ⊢ Rel ({𝐴} × {𝐴}) | |
| 3 | velsn 3651 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | velsn 3651 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 5 | 3, 4 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 6 | vex 2776 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | 6 | ideq 4834 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 8 | 3, 7 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝑦)) |
| 9 | eqeq1 2213 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 10 | eqcom 2208 | . . . . . . 7 ⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) | |
| 11 | 9, 10 | bitrdi 196 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑦 = 𝐴)) |
| 12 | 11 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 13 | 8, 12 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 14 | df-br 4048 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 15 | 14 | anbi2i 457 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
| 16 | 5, 13, 15 | 3bitr2ri 209 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) |
| 17 | 6 | opelres 4969 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ {𝐴})) |
| 18 | 17 | biancomi 270 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
| 19 | opelxp 4709 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) | |
| 20 | 16, 18, 19 | 3bitr4i 212 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴})) |
| 21 | 1, 2, 20 | eqrelriiv 4773 | 1 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3634 〈cop 3637 class class class wbr 4047 I cid 4339 × cxp 4677 ↾ cres 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-res 4691 |
| This theorem is referenced by: grp1inv 13483 |
| Copyright terms: Public domain | W3C validator |