![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restidsing | GIF version |
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
Ref | Expression |
---|---|
restidsing | ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4947 | . 2 ⊢ Rel ( I ↾ {𝐴}) | |
2 | relxp 4747 | . 2 ⊢ Rel ({𝐴} × {𝐴}) | |
3 | velsn 3621 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | velsn 3621 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
5 | 3, 4 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
6 | vex 2752 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 6 | ideq 4791 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
8 | 3, 7 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝑦)) |
9 | eqeq1 2194 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
10 | eqcom 2189 | . . . . . . 7 ⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) | |
11 | 9, 10 | bitrdi 196 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑦 = 𝐴)) |
12 | 11 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
13 | 8, 12 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
14 | df-br 4016 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I ) | |
15 | 14 | anbi2i 457 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I )) |
16 | 5, 13, 15 | 3bitr2ri 209 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) |
17 | 6 | opelres 4924 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ {𝐴})) |
18 | 17 | biancomi 270 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I )) |
19 | opelxp 4668 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) | |
20 | 16, 18, 19 | 3bitr4i 212 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴})) |
21 | 1, 2, 20 | eqrelriiv 4732 | 1 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1363 ∈ wcel 2158 {csn 3604 ⟨cop 3607 class class class wbr 4015 I cid 4300 × cxp 4636 ↾ cres 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-res 4650 |
This theorem is referenced by: grp1inv 13003 |
Copyright terms: Public domain | W3C validator |