| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restidsing | GIF version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| restidsing | ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5009 | . 2 ⊢ Rel ( I ↾ {𝐴}) | |
| 2 | relxp 4805 | . 2 ⊢ Rel ({𝐴} × {𝐴}) | |
| 3 | velsn 3663 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | velsn 3663 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 5 | 3, 4 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 6 | vex 2782 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | 6 | ideq 4851 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 8 | 3, 7 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝑦)) |
| 9 | eqeq1 2216 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 10 | eqcom 2211 | . . . . . . 7 ⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) | |
| 11 | 9, 10 | bitrdi 196 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑦 = 𝐴)) |
| 12 | 11 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 13 | 8, 12 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 14 | df-br 4063 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 15 | 14 | anbi2i 457 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
| 16 | 5, 13, 15 | 3bitr2ri 209 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) |
| 17 | 6 | opelres 4986 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ {𝐴})) |
| 18 | 17 | biancomi 270 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
| 19 | opelxp 4726 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) | |
| 20 | 16, 18, 19 | 3bitr4i 212 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴})) |
| 21 | 1, 2, 20 | eqrelriiv 4790 | 1 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 {csn 3646 〈cop 3649 class class class wbr 4062 I cid 4356 × cxp 4694 ↾ cres 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-res 4708 |
| This theorem is referenced by: grp1inv 13606 |
| Copyright terms: Public domain | W3C validator |