Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexr | GIF version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7942 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 1 | sseli 3138 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℝcr 7752 ℝ*cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-xr 7937 |
This theorem is referenced by: rexri 7956 lenlt 7974 ltpnf 9716 mnflt 9719 xrltnsym 9729 xrlttr 9731 xrltso 9732 xrre 9756 xrre3 9758 xltnegi 9771 rexadd 9788 xaddnemnf 9793 xaddnepnf 9794 xaddcom 9797 xnegdi 9804 xpncan 9807 xnpcan 9808 xleadd1a 9809 xleadd1 9811 xltadd1 9812 xltadd2 9813 xsubge0 9817 xposdif 9818 elioo4g 9870 elioc2 9872 elico2 9873 elicc2 9874 iccss 9877 iooshf 9888 iooneg 9924 icoshft 9926 qbtwnxr 10193 modqmuladdim 10302 elicc4abs 11036 icodiamlt 11122 xrmaxrecl 11196 xrmaxaddlem 11201 xrminrecl 11214 bl2in 13043 blssps 13067 blss 13068 reopnap 13178 bl2ioo 13182 blssioo 13185 sincosq2sgn 13388 sincosq3sgn 13389 sincos6thpi 13403 |
Copyright terms: Public domain | W3C validator |