| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | GIF version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8089 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℝcr 7897 ℝ*cxr 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8084 |
| This theorem is referenced by: rexri 8103 lenlt 8121 ltpnf 9874 mnflt 9877 xrltnsym 9887 xrlttr 9889 xrltso 9890 xrre 9914 xrre3 9916 xltnegi 9929 rexadd 9946 xaddnemnf 9951 xaddnepnf 9952 xaddcom 9955 xnegdi 9962 xpncan 9965 xnpcan 9966 xleadd1a 9967 xleadd1 9969 xltadd1 9970 xltadd2 9971 xsubge0 9975 xposdif 9976 elioo4g 10028 elioc2 10030 elico2 10031 elicc2 10032 iccss 10035 iooshf 10046 iooneg 10082 icoshft 10084 qbtwnxr 10366 modqmuladdim 10478 elicc4abs 11278 icodiamlt 11364 xrmaxrecl 11439 xrmaxaddlem 11444 xrminrecl 11457 bl2in 14747 blssps 14771 blss 14772 reopnap 14890 bl2ioo 14894 blssioo 14897 sincosq2sgn 15171 sincosq3sgn 15172 sincos6thpi 15186 |
| Copyright terms: Public domain | W3C validator |