| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | GIF version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8158 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 1 | sseli 3200 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ℝcr 7966 ℝ*cxr 8148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-xr 8153 |
| This theorem is referenced by: rexri 8172 lenlt 8190 ltpnf 9944 mnflt 9947 xrltnsym 9957 xrlttr 9959 xrltso 9960 xrre 9984 xrre3 9986 xltnegi 9999 rexadd 10016 xaddnemnf 10021 xaddnepnf 10022 xaddcom 10025 xnegdi 10032 xpncan 10035 xnpcan 10036 xleadd1a 10037 xleadd1 10039 xltadd1 10040 xltadd2 10041 xsubge0 10045 xposdif 10046 elioo4g 10098 elioc2 10100 elico2 10101 elicc2 10102 iccss 10105 iooshf 10116 iooneg 10152 icoshft 10154 qbtwnxr 10444 modqmuladdim 10556 elicc4abs 11571 icodiamlt 11657 xrmaxrecl 11732 xrmaxaddlem 11737 xrminrecl 11750 bl2in 15042 blssps 15066 blss 15067 reopnap 15185 bl2ioo 15189 blssioo 15192 sincosq2sgn 15466 sincosq3sgn 15467 sincos6thpi 15481 |
| Copyright terms: Public domain | W3C validator |