| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | GIF version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8087 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℝcr 7895 ℝ*cxr 8077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8082 |
| This theorem is referenced by: rexri 8101 lenlt 8119 ltpnf 9872 mnflt 9875 xrltnsym 9885 xrlttr 9887 xrltso 9888 xrre 9912 xrre3 9914 xltnegi 9927 rexadd 9944 xaddnemnf 9949 xaddnepnf 9950 xaddcom 9953 xnegdi 9960 xpncan 9963 xnpcan 9964 xleadd1a 9965 xleadd1 9967 xltadd1 9968 xltadd2 9969 xsubge0 9973 xposdif 9974 elioo4g 10026 elioc2 10028 elico2 10029 elicc2 10030 iccss 10033 iooshf 10044 iooneg 10080 icoshft 10082 qbtwnxr 10364 modqmuladdim 10476 elicc4abs 11276 icodiamlt 11362 xrmaxrecl 11437 xrmaxaddlem 11442 xrminrecl 11455 bl2in 14723 blssps 14747 blss 14748 reopnap 14866 bl2ioo 14870 blssioo 14873 sincosq2sgn 15147 sincosq3sgn 15148 sincos6thpi 15162 |
| Copyright terms: Public domain | W3C validator |