| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | GIF version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8198 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 1 | sseli 3220 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℝcr 8006 ℝ*cxr 8188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8193 |
| This theorem is referenced by: rexri 8212 lenlt 8230 ltpnf 9984 mnflt 9987 xrltnsym 9997 xrlttr 9999 xrltso 10000 xrre 10024 xrre3 10026 xltnegi 10039 rexadd 10056 xaddnemnf 10061 xaddnepnf 10062 xaddcom 10065 xnegdi 10072 xpncan 10075 xnpcan 10076 xleadd1a 10077 xleadd1 10079 xltadd1 10080 xltadd2 10081 xsubge0 10085 xposdif 10086 elioo4g 10138 elioc2 10140 elico2 10141 elicc2 10142 iccss 10145 iooshf 10156 iooneg 10192 icoshft 10194 qbtwnxr 10485 modqmuladdim 10597 elicc4abs 11613 icodiamlt 11699 xrmaxrecl 11774 xrmaxaddlem 11779 xrminrecl 11792 bl2in 15085 blssps 15109 blss 15110 reopnap 15228 bl2ioo 15232 blssioo 15235 sincosq2sgn 15509 sincosq3sgn 15510 sincos6thpi 15524 |
| Copyright terms: Public domain | W3C validator |