| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexr | GIF version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ressxr 8070 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 1 | sseli 3179 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ℝcr 7878 ℝ*cxr 8060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8065 | 
| This theorem is referenced by: rexri 8084 lenlt 8102 ltpnf 9855 mnflt 9858 xrltnsym 9868 xrlttr 9870 xrltso 9871 xrre 9895 xrre3 9897 xltnegi 9910 rexadd 9927 xaddnemnf 9932 xaddnepnf 9933 xaddcom 9936 xnegdi 9943 xpncan 9946 xnpcan 9947 xleadd1a 9948 xleadd1 9950 xltadd1 9951 xltadd2 9952 xsubge0 9956 xposdif 9957 elioo4g 10009 elioc2 10011 elico2 10012 elicc2 10013 iccss 10016 iooshf 10027 iooneg 10063 icoshft 10065 qbtwnxr 10347 modqmuladdim 10459 elicc4abs 11259 icodiamlt 11345 xrmaxrecl 11420 xrmaxaddlem 11425 xrminrecl 11438 bl2in 14639 blssps 14663 blss 14664 reopnap 14782 bl2ioo 14786 blssioo 14789 sincosq2sgn 15063 sincosq3sgn 15064 sincos6thpi 15078 | 
| Copyright terms: Public domain | W3C validator |