![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexr | GIF version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8063 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 1 | sseli 3175 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℝcr 7871 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-xr 8058 |
This theorem is referenced by: rexri 8077 lenlt 8095 ltpnf 9846 mnflt 9849 xrltnsym 9859 xrlttr 9861 xrltso 9862 xrre 9886 xrre3 9888 xltnegi 9901 rexadd 9918 xaddnemnf 9923 xaddnepnf 9924 xaddcom 9927 xnegdi 9934 xpncan 9937 xnpcan 9938 xleadd1a 9939 xleadd1 9941 xltadd1 9942 xltadd2 9943 xsubge0 9947 xposdif 9948 elioo4g 10000 elioc2 10002 elico2 10003 elicc2 10004 iccss 10007 iooshf 10018 iooneg 10054 icoshft 10056 qbtwnxr 10326 modqmuladdim 10438 elicc4abs 11238 icodiamlt 11324 xrmaxrecl 11398 xrmaxaddlem 11403 xrminrecl 11416 bl2in 14571 blssps 14595 blss 14596 reopnap 14706 bl2ioo 14710 blssioo 14713 sincosq2sgn 14962 sincosq3sgn 14963 sincos6thpi 14977 |
Copyright terms: Public domain | W3C validator |