| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | GIF version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8123 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 1 | sseli 3190 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ℝcr 7931 ℝ*cxr 8113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-xr 8118 |
| This theorem is referenced by: rexri 8137 lenlt 8155 ltpnf 9909 mnflt 9912 xrltnsym 9922 xrlttr 9924 xrltso 9925 xrre 9949 xrre3 9951 xltnegi 9964 rexadd 9981 xaddnemnf 9986 xaddnepnf 9987 xaddcom 9990 xnegdi 9997 xpncan 10000 xnpcan 10001 xleadd1a 10002 xleadd1 10004 xltadd1 10005 xltadd2 10006 xsubge0 10010 xposdif 10011 elioo4g 10063 elioc2 10065 elico2 10066 elicc2 10067 iccss 10070 iooshf 10081 iooneg 10117 icoshft 10119 qbtwnxr 10407 modqmuladdim 10519 elicc4abs 11449 icodiamlt 11535 xrmaxrecl 11610 xrmaxaddlem 11615 xrminrecl 11628 bl2in 14919 blssps 14943 blss 14944 reopnap 15062 bl2ioo 15066 blssioo 15069 sincosq2sgn 15343 sincosq3sgn 15344 sincos6thpi 15358 |
| Copyright terms: Public domain | W3C validator |