ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbas GIF version

Theorem qtopbas 15064
Description: The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
qtopbas ((,) “ (ℚ × ℚ)) ∈ TopBases

Proof of Theorem qtopbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 9766 . . 3 ℚ ⊆ ℝ
2 ressxr 8131 . . 3 ℝ ⊆ ℝ*
31, 2sstri 3206 . 2 ℚ ⊆ ℝ*
4 qre 9761 . . . 4 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
5 qre 9761 . . . 4 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
6 xrmaxrecl 11636 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
74, 5, 6syl2an 289 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
8 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑥)
9 simpll 527 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
108, 9eqeltrd 2283 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
11 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)
12 simplr 528 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
1311, 12eqeltrd 2283 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
14 qletric 10401 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥𝑦𝑦𝑥))
15 maxclpr 11603 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
164, 5, 15syl2an 289 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
1714, 16mpbird 167 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
18 elpri 3660 . . . . 5 (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
1917, 18syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
2010, 13, 19mpjaodan 800 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
217, 20eqeltrd 2283 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
22 xrminrecl 11654 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
234, 5, 22syl2an 289 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
24 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑥)
25 simpll 527 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
2624, 25eqeltrd 2283 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
27 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)
28 simplr 528 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
2927, 28eqeltrd 2283 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
30 minclpr 11618 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
314, 5, 30syl2an 289 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
3214, 31mpbird 167 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
33 elpri 3660 . . . . 5 (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3432, 33syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3526, 29, 34mpjaodan 800 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
3623, 35eqeltrd 2283 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
373, 21, 36qtopbasss 15063 1 ((,) “ (ℚ × ℚ)) ∈ TopBases
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  {cpr 3638   class class class wbr 4050   × cxp 4680  cima 4685  supcsup 7098  infcinf 7099  cr 7939  *cxr 8121   < clt 8122  cle 8123  cq 9755  (,)cioo 10025  TopBasesctb 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-xneg 9909  df-ioo 10029  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-bases 14585
This theorem is referenced by:  tgqioo  15097
  Copyright terms: Public domain W3C validator