ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbas GIF version

Theorem qtopbas 13162
Description: The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
qtopbas ((,) “ (ℚ × ℚ)) ∈ TopBases

Proof of Theorem qtopbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 9568 . . 3 ℚ ⊆ ℝ
2 ressxr 7942 . . 3 ℝ ⊆ ℝ*
31, 2sstri 3151 . 2 ℚ ⊆ ℝ*
4 qre 9563 . . . 4 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
5 qre 9563 . . . 4 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
6 xrmaxrecl 11196 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
74, 5, 6syl2an 287 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
8 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑥)
9 simpll 519 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
108, 9eqeltrd 2243 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
11 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)
12 simplr 520 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
1311, 12eqeltrd 2243 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
14 qletric 10179 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥𝑦𝑦𝑥))
15 maxclpr 11164 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
164, 5, 15syl2an 287 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
1714, 16mpbird 166 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
18 elpri 3599 . . . . 5 (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
1917, 18syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
2010, 13, 19mpjaodan 788 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
217, 20eqeltrd 2243 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
22 xrminrecl 11214 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
234, 5, 22syl2an 287 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
24 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑥)
25 simpll 519 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
2624, 25eqeltrd 2243 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
27 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)
28 simplr 520 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
2927, 28eqeltrd 2243 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
30 minclpr 11178 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
314, 5, 30syl2an 287 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
3214, 31mpbird 166 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
33 elpri 3599 . . . . 5 (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3432, 33syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3526, 29, 34mpjaodan 788 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
3623, 35eqeltrd 2243 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
373, 21, 36qtopbasss 13161 1 ((,) “ (ℚ × ℚ)) ∈ TopBases
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  {cpr 3577   class class class wbr 3982   × cxp 4602  cima 4607  supcsup 6947  infcinf 6948  cr 7752  *cxr 7932   < clt 7933  cle 7934  cq 9557  (,)cioo 9824  TopBasesctb 12680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-ioo 9828  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-bases 12681
This theorem is referenced by:  tgqioo  13187
  Copyright terms: Public domain W3C validator