| Step | Hyp | Ref
| Expression |
| 1 | | qssre 9721 |
. . 3
⊢ ℚ
⊆ ℝ |
| 2 | | ressxr 8087 |
. . 3
⊢ ℝ
⊆ ℝ* |
| 3 | 1, 2 | sstri 3193 |
. 2
⊢ ℚ
⊆ ℝ* |
| 4 | | qre 9716 |
. . . 4
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) |
| 5 | | qre 9716 |
. . . 4
⊢ (𝑦 ∈ ℚ → 𝑦 ∈
ℝ) |
| 6 | | xrmaxrecl 11437 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < )) |
| 7 | 4, 5, 6 | syl2an 289 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < )) |
| 8 | | simpr 110 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) |
| 9 | | simpll 527 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ) |
| 10 | 8, 9 | eqeltrd 2273 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
| 11 | | simpr 110 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) |
| 12 | | simplr 528 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ) |
| 13 | 11, 12 | eqeltrd 2273 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
| 14 | | qletric 10348 |
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
| 15 | | maxclpr 11404 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
| 16 | 4, 5, 15 | syl2an 289 |
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
| 17 | 14, 16 | mpbird 167 |
. . . . 5
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦}) |
| 18 | | elpri 3646 |
. . . . 5
⊢
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
| 19 | 17, 18 | syl 14 |
. . . 4
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
| 20 | 10, 13, 19 | mpjaodan 799 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
| 21 | 7, 20 | eqeltrd 2273 |
. 2
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ*, < ) ∈
ℚ) |
| 22 | | xrminrecl 11455 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < )) |
| 23 | 4, 5, 22 | syl2an 289 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < )) |
| 24 | | simpr 110 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) |
| 25 | | simpll 527 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ) |
| 26 | 24, 25 | eqeltrd 2273 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
| 27 | | simpr 110 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) |
| 28 | | simplr 528 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ) |
| 29 | 27, 28 | eqeltrd 2273 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
| 30 | | minclpr 11419 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
| 31 | 4, 5, 30 | syl2an 289 |
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
| 32 | 14, 31 | mpbird 167 |
. . . . 5
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦}) |
| 33 | | elpri 3646 |
. . . . 5
⊢
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
| 34 | 32, 33 | syl 14 |
. . . 4
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
| 35 | 26, 29, 34 | mpjaodan 799 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
| 36 | 23, 35 | eqeltrd 2273 |
. 2
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ*, < ) ∈
ℚ) |
| 37 | 3, 21, 36 | qtopbasss 14841 |
1
⊢ ((,)
“ (ℚ × ℚ)) ∈ TopBases |