ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbas GIF version

Theorem qtopbas 14842
Description: The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
qtopbas ((,) “ (ℚ × ℚ)) ∈ TopBases

Proof of Theorem qtopbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 9721 . . 3 ℚ ⊆ ℝ
2 ressxr 8087 . . 3 ℝ ⊆ ℝ*
31, 2sstri 3193 . 2 ℚ ⊆ ℝ*
4 qre 9716 . . . 4 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
5 qre 9716 . . . 4 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
6 xrmaxrecl 11437 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
74, 5, 6syl2an 289 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
8 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑥)
9 simpll 527 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
108, 9eqeltrd 2273 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
11 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)
12 simplr 528 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
1311, 12eqeltrd 2273 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
14 qletric 10348 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥𝑦𝑦𝑥))
15 maxclpr 11404 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
164, 5, 15syl2an 289 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
1714, 16mpbird 167 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
18 elpri 3646 . . . . 5 (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
1917, 18syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
2010, 13, 19mpjaodan 799 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
217, 20eqeltrd 2273 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
22 xrminrecl 11455 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
234, 5, 22syl2an 289 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
24 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑥)
25 simpll 527 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
2624, 25eqeltrd 2273 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
27 simpr 110 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)
28 simplr 528 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
2927, 28eqeltrd 2273 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
30 minclpr 11419 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
314, 5, 30syl2an 289 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
3214, 31mpbird 167 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
33 elpri 3646 . . . . 5 (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3432, 33syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3526, 29, 34mpjaodan 799 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
3623, 35eqeltrd 2273 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
373, 21, 36qtopbasss 14841 1 ((,) “ (ℚ × ℚ)) ∈ TopBases
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  {cpr 3624   class class class wbr 4034   × cxp 4662  cima 4667  supcsup 7057  infcinf 7058  cr 7895  *cxr 8077   < clt 8078  cle 8079  cq 9710  (,)cioo 9980  TopBasesctb 14362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-ioo 9984  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-bases 14363
This theorem is referenced by:  tgqioo  14875
  Copyright terms: Public domain W3C validator