Step | Hyp | Ref
| Expression |
1 | | qssre 9589 |
. . 3
⊢ ℚ
⊆ ℝ |
2 | | ressxr 7963 |
. . 3
⊢ ℝ
⊆ ℝ* |
3 | 1, 2 | sstri 3156 |
. 2
⊢ ℚ
⊆ ℝ* |
4 | | qre 9584 |
. . . 4
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) |
5 | | qre 9584 |
. . . 4
⊢ (𝑦 ∈ ℚ → 𝑦 ∈
ℝ) |
6 | | xrmaxrecl 11218 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < )) |
7 | 4, 5, 6 | syl2an 287 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < )) |
8 | | simpr 109 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) |
9 | | simpll 524 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ) |
10 | 8, 9 | eqeltrd 2247 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
11 | | simpr 109 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) |
12 | | simplr 525 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ) |
13 | 11, 12 | eqeltrd 2247 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
14 | | qletric 10200 |
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
15 | | maxclpr 11186 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
16 | 4, 5, 15 | syl2an 287 |
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
17 | 14, 16 | mpbird 166 |
. . . . 5
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦}) |
18 | | elpri 3606 |
. . . . 5
⊢
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
19 | 17, 18 | syl 14 |
. . . 4
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
20 | 10, 13, 19 | mpjaodan 793 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
21 | 7, 20 | eqeltrd 2247 |
. 2
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ*, < ) ∈
ℚ) |
22 | | xrminrecl 11236 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < )) |
23 | 4, 5, 22 | syl2an 287 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < )) |
24 | | simpr 109 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) |
25 | | simpll 524 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ) |
26 | 24, 25 | eqeltrd 2247 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
27 | | simpr 109 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) |
28 | | simplr 525 |
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ) |
29 | 27, 28 | eqeltrd 2247 |
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
30 | | minclpr 11200 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
31 | 4, 5, 30 | syl2an 287 |
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
32 | 14, 31 | mpbird 166 |
. . . . 5
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦}) |
33 | | elpri 3606 |
. . . . 5
⊢
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
34 | 32, 33 | syl 14 |
. . . 4
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)) |
35 | 26, 29, 34 | mpjaodan 793 |
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) |
36 | 23, 35 | eqeltrd 2247 |
. 2
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ*, < ) ∈
ℚ) |
37 | 3, 21, 36 | qtopbasss 13315 |
1
⊢ ((,)
“ (ℚ × ℚ)) ∈ TopBases |