ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbas GIF version

Theorem qtopbas 12691
Description: The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
qtopbas ((,) “ (ℚ × ℚ)) ∈ TopBases

Proof of Theorem qtopbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 9422 . . 3 ℚ ⊆ ℝ
2 ressxr 7809 . . 3 ℝ ⊆ ℝ*
31, 2sstri 3106 . 2 ℚ ⊆ ℝ*
4 qre 9417 . . . 4 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
5 qre 9417 . . . 4 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
6 xrmaxrecl 11024 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
74, 5, 6syl2an 287 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < ))
8 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑥)
9 simpll 518 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
108, 9eqeltrd 2216 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
11 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)
12 simplr 519 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
1311, 12eqeltrd 2216 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
14 qletric 10021 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥𝑦𝑦𝑥))
15 maxclpr 10994 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
164, 5, 15syl2an 287 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
1714, 16mpbird 166 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
18 elpri 3550 . . . . 5 (sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
1917, 18syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦))
2010, 13, 19mpjaodan 787 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
217, 20eqeltrd 2216 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
22 xrminrecl 11042 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
234, 5, 22syl2an 287 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < ))
24 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑥)
25 simpll 518 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ)
2624, 25eqeltrd 2216 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
27 simpr 109 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)
28 simplr 519 . . . . 5 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ)
2927, 28eqeltrd 2216 . . . 4 (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
30 minclpr 11008 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
314, 5, 30syl2an 287 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥𝑦𝑦𝑥)))
3214, 31mpbird 166 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦})
33 elpri 3550 . . . . 5 (inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3432, 33syl 14 . . . 4 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦))
3526, 29, 34mpjaodan 787 . . 3 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ, < ) ∈ ℚ)
3623, 35eqeltrd 2216 . 2 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ ℚ)
373, 21, 36qtopbasss 12690 1 ((,) “ (ℚ × ℚ)) ∈ TopBases
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  {cpr 3528   class class class wbr 3929   × cxp 4537  cima 4542  supcsup 6869  infcinf 6870  cr 7619  *cxr 7799   < clt 7800  cle 7801  cq 9411  (,)cioo 9671  TopBasesctb 12209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-ioo 9675  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-bases 12210
This theorem is referenced by:  tgqioo  12716
  Copyright terms: Public domain W3C validator