| Step | Hyp | Ref
 | Expression | 
| 1 |   | qssre 9704 | 
. . 3
⊢ ℚ
⊆ ℝ | 
| 2 |   | ressxr 8070 | 
. . 3
⊢ ℝ
⊆ ℝ* | 
| 3 | 1, 2 | sstri 3192 | 
. 2
⊢ ℚ
⊆ ℝ* | 
| 4 |   | qre 9699 | 
. . . 4
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) | 
| 5 |   | qre 9699 | 
. . . 4
⊢ (𝑦 ∈ ℚ → 𝑦 ∈
ℝ) | 
| 6 |   | xrmaxrecl 11420 | 
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < )) | 
| 7 | 4, 5, 6 | syl2an 289 | 
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑥, 𝑦}, ℝ, < )) | 
| 8 |   | simpr 110 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) | 
| 9 |   | simpll 527 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ) | 
| 10 | 8, 9 | eqeltrd 2273 | 
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑥) → sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) | 
| 11 |   | simpr 110 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) | 
| 12 |   | simplr 528 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ) | 
| 13 | 11, 12 | eqeltrd 2273 | 
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
sup({𝑥, 𝑦}, ℝ, < ) = 𝑦) → sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) | 
| 14 |   | qletric 10331 | 
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | 
| 15 |   | maxclpr 11387 | 
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | 
| 16 | 4, 5, 15 | syl2an 289 | 
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | 
| 17 | 14, 16 | mpbird 167 | 
. . . . 5
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦}) | 
| 18 |   | elpri 3645 | 
. . . . 5
⊢
(sup({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)) | 
| 19 | 17, 18 | syl 14 | 
. . . 4
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(sup({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ sup({𝑥, 𝑦}, ℝ, < ) = 𝑦)) | 
| 20 | 10, 13, 19 | mpjaodan 799 | 
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) | 
| 21 | 7, 20 | eqeltrd 2273 | 
. 2
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
sup({𝑥, 𝑦}, ℝ*, < ) ∈
ℚ) | 
| 22 |   | xrminrecl 11438 | 
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < )) | 
| 23 | 4, 5, 22 | syl2an 289 | 
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑥, 𝑦}, ℝ, < )) | 
| 24 |   | simpr 110 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) | 
| 25 |   | simpll 527 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → 𝑥 ∈ ℚ) | 
| 26 | 24, 25 | eqeltrd 2273 | 
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑥) → inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) | 
| 27 |   | simpr 110 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) | 
| 28 |   | simplr 528 | 
. . . . 5
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → 𝑦 ∈ ℚ) | 
| 29 | 27, 28 | eqeltrd 2273 | 
. . . 4
⊢ (((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) ∧
inf({𝑥, 𝑦}, ℝ, < ) = 𝑦) → inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) | 
| 30 |   | minclpr 11402 | 
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | 
| 31 | 4, 5, 30 | syl2an 289 | 
. . . . . 6
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | 
| 32 | 14, 31 | mpbird 167 | 
. . . . 5
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦}) | 
| 33 |   | elpri 3645 | 
. . . . 5
⊢
(inf({𝑥, 𝑦}, ℝ, < ) ∈ {𝑥, 𝑦} → (inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)) | 
| 34 | 32, 33 | syl 14 | 
. . . 4
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
(inf({𝑥, 𝑦}, ℝ, < ) = 𝑥 ∨ inf({𝑥, 𝑦}, ℝ, < ) = 𝑦)) | 
| 35 | 26, 29, 34 | mpjaodan 799 | 
. . 3
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ, < ) ∈
ℚ) | 
| 36 | 23, 35 | eqeltrd 2273 | 
. 2
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) →
inf({𝑥, 𝑦}, ℝ*, < ) ∈
ℚ) | 
| 37 | 3, 21, 36 | qtopbasss 14757 | 
1
⊢ ((,)
“ (ℚ × ℚ)) ∈ TopBases |