ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemexbt GIF version

Theorem caucvgprprlemexbt 7790
Description: Lemma for caucvgprpr 7796. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemexbt.q (𝜑𝑄Q)
caucvgprprlemexbt.t (𝜑𝑇P)
caucvgprprlemexbt.lt (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)
Assertion
Ref Expression
caucvgprprlemexbt (𝜑 → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐹,𝑏   𝑘,𝐹,𝑙,𝑛,𝑢   𝐹,𝑟   𝐿,𝑏   𝑘,𝐿   𝑄,𝑏,𝑝,𝑞   𝑇,𝑏   𝜑,𝑏   𝑟,𝑏,𝑝,𝑞   𝑘,𝑝,𝑞,𝑟,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑏,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑟,𝑙)   𝑇(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemexbt
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprprlemexbt.lt . . . . 5 (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)
2 caucvgprpr.f . . . . . . . 8 (𝜑𝐹:NP)
3 caucvgprpr.cau . . . . . . . 8 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
4 caucvgprpr.bnd . . . . . . . 8 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
5 caucvgprpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
62, 3, 4, 5caucvgprprlemclphr 7789 . . . . . . 7 (𝜑𝐿P)
7 caucvgprprlemexbt.q . . . . . . . 8 (𝜑𝑄Q)
8 nqprlu 7631 . . . . . . . 8 (𝑄Q → ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩ ∈ P)
97, 8syl 14 . . . . . . 7 (𝜑 → ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩ ∈ P)
10 addclpr 7621 . . . . . . 7 ((𝐿P ∧ ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩ ∈ P) → (𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P)
116, 9, 10syl2anc 411 . . . . . 6 (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P)
12 caucvgprprlemexbt.t . . . . . 6 (𝜑𝑇P)
13 ltdfpr 7590 . . . . . 6 (((𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P𝑇P) → ((𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
1411, 12, 13syl2anc 411 . . . . 5 (𝜑 → ((𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
151, 14mpbid 147 . . . 4 (𝜑 → ∃𝑥Q (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))
166adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) → 𝐿P)
177adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) → 𝑄Q)
18 simprrl 539 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) → 𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)))
1916, 17, 18prplnqu 7704 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) → ∃𝑦 ∈ (2nd𝐿)(𝑦 +Q 𝑄) = 𝑥)
20 simprl 529 . . . . . . . . . 10 (((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) → 𝑦 ∈ (2nd𝐿))
21 breq2 4038 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑦 → (𝑝 <Q 𝑢𝑝 <Q 𝑦))
2221abbidv 2314 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q 𝑦})
23 breq1 4037 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑦 → (𝑢 <Q 𝑞𝑦 <Q 𝑞))
2423abbidv 2314 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → {𝑞𝑢 <Q 𝑞} = {𝑞𝑦 <Q 𝑞})
2522, 24opeq12d 3817 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦 → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩)
2625breq2d 4046 . . . . . . . . . . . . . 14 (𝑢 = 𝑦 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩))
2726rexbidv 2498 . . . . . . . . . . . . 13 (𝑢 = 𝑦 → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩))
285fveq2i 5564 . . . . . . . . . . . . . 14 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
29 nqex 7447 . . . . . . . . . . . . . . . 16 Q ∈ V
3029rabex 4178 . . . . . . . . . . . . . . 15 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
3129rabex 4178 . . . . . . . . . . . . . . 15 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
3230, 31op2nd 6214 . . . . . . . . . . . . . 14 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
3328, 32eqtri 2217 . . . . . . . . . . . . 13 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
3427, 33elrab2 2923 . . . . . . . . . . . 12 (𝑦 ∈ (2nd𝐿) ↔ (𝑦Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩))
3534biimpi 120 . . . . . . . . . . 11 (𝑦 ∈ (2nd𝐿) → (𝑦Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩))
3635simprd 114 . . . . . . . . . 10 (𝑦 ∈ (2nd𝐿) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩)
3720, 36syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩)
38 fveq2 5561 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝐹𝑟) = (𝐹𝑏))
39 opeq1 3809 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑏 → ⟨𝑟, 1o⟩ = ⟨𝑏, 1o⟩)
4039eceq1d 6637 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑏 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
4140fveq2d 5565 . . . . . . . . . . . . . . 15 (𝑟 = 𝑏 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
4241breq2d 4046 . . . . . . . . . . . . . 14 (𝑟 = 𝑏 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
4342abbidv 2314 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )})
4441breq1d 4044 . . . . . . . . . . . . . 14 (𝑟 = 𝑏 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞))
4544abbidv 2314 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞})
4643, 45opeq12d 3817 . . . . . . . . . . . 12 (𝑟 = 𝑏 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)
4738, 46oveq12d 5943 . . . . . . . . . . 11 (𝑟 = 𝑏 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩))
4847breq1d 4044 . . . . . . . . . 10 (𝑟 = 𝑏 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩))
4948cbvrexv 2730 . . . . . . . . 9 (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ ↔ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩)
5037, 49sylib 122 . . . . . . . 8 (((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩)
51 simpr 110 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩)
52 ltaprg 7703 . . . . . . . . . . . . . . . . 17 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
5352adantl 277 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
542ad4antr 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝐹:NP)
55 simplr 528 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝑏N)
5654, 55ffvelcdmd 5701 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (𝐹𝑏) ∈ P)
57 recnnpr 7632 . . . . . . . . . . . . . . . . . 18 (𝑏N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
5855, 57syl 14 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
59 addclpr 7621 . . . . . . . . . . . . . . . . 17 (((𝐹𝑏) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
6056, 58, 59syl2anc 411 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
6120ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝑦 ∈ (2nd𝐿))
6235simpld 112 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (2nd𝐿) → 𝑦Q)
6361, 62syl 14 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝑦Q)
64 nqprlu 7631 . . . . . . . . . . . . . . . . 17 (𝑦Q → ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ ∈ P)
6563, 64syl 14 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ ∈ P)
669ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩ ∈ P)
67 addcomprg 7662 . . . . . . . . . . . . . . . . 17 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
6867adantl 277 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
6953, 60, 65, 66, 68caovord2d 6097 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)))
7051, 69mpbid 147 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩))
717ad4antr 494 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝑄Q)
72 addnqpr 7645 . . . . . . . . . . . . . . 15 ((𝑦Q𝑄Q) → ⟨{𝑝𝑝 <Q (𝑦 +Q 𝑄)}, {𝑞 ∣ (𝑦 +Q 𝑄) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩))
7363, 71, 72syl2anc 411 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → ⟨{𝑝𝑝 <Q (𝑦 +Q 𝑄)}, {𝑞 ∣ (𝑦 +Q 𝑄) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩))
7470, 73breqtrrd 4062 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑦 +Q 𝑄)}, {𝑞 ∣ (𝑦 +Q 𝑄) <Q 𝑞}⟩)
75 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) → (𝑦 +Q 𝑄) = 𝑥)
7675adantr 276 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (𝑦 +Q 𝑄) = 𝑥)
77 breq2 4038 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑄) = 𝑥 → (𝑝 <Q (𝑦 +Q 𝑄) ↔ 𝑝 <Q 𝑥))
7877abbidv 2314 . . . . . . . . . . . . . . . 16 ((𝑦 +Q 𝑄) = 𝑥 → {𝑝𝑝 <Q (𝑦 +Q 𝑄)} = {𝑝𝑝 <Q 𝑥})
79 breq1 4037 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑄) = 𝑥 → ((𝑦 +Q 𝑄) <Q 𝑞𝑥 <Q 𝑞))
8079abbidv 2314 . . . . . . . . . . . . . . . 16 ((𝑦 +Q 𝑄) = 𝑥 → {𝑞 ∣ (𝑦 +Q 𝑄) <Q 𝑞} = {𝑞𝑥 <Q 𝑞})
8178, 80opeq12d 3817 . . . . . . . . . . . . . . 15 ((𝑦 +Q 𝑄) = 𝑥 → ⟨{𝑝𝑝 <Q (𝑦 +Q 𝑄)}, {𝑞 ∣ (𝑦 +Q 𝑄) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
8281breq2d 4046 . . . . . . . . . . . . . 14 ((𝑦 +Q 𝑄) = 𝑥 → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑦 +Q 𝑄)}, {𝑞 ∣ (𝑦 +Q 𝑄) <Q 𝑞}⟩ ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
8376, 82syl 14 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑦 +Q 𝑄)}, {𝑞 ∣ (𝑦 +Q 𝑄) <Q 𝑞}⟩ ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
8474, 83mpbid 147 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
85 simplrl 535 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) → 𝑥Q)
8685ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝑥Q)
87 addclpr 7621 . . . . . . . . . . . . . 14 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩ ∈ P) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P)
8860, 66, 87syl2anc 411 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P)
89 nqpru 7636 . . . . . . . . . . . . 13 ((𝑥Q ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P) → (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
9086, 88, 89syl2anc 411 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
9184, 90mpbird 167 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)))
92 simprrr 540 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) → 𝑥 ∈ (1st𝑇))
9392ad3antrrr 492 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → 𝑥 ∈ (1st𝑇))
9491, 93jca 306 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩) → (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))
9594ex 115 . . . . . . . . 9 ((((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) ∧ 𝑏N) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ → (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
9695reximdva 2599 . . . . . . . 8 (((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) → (∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑦}, {𝑞𝑦 <Q 𝑞}⟩ → ∃𝑏N (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
9750, 96mpd 13 . . . . . . 7 (((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) ∧ (𝑦 ∈ (2nd𝐿) ∧ (𝑦 +Q 𝑄) = 𝑥)) → ∃𝑏N (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))
9819, 97rexlimddv 2619 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))) → ∃𝑏N (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))
9998expr 375 . . . . 5 ((𝜑𝑥Q) → ((𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)) → ∃𝑏N (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
10099reximdva 2599 . . . 4 (𝜑 → (∃𝑥Q (𝑥 ∈ (2nd ‘(𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)) → ∃𝑥Q𝑏N (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
10115, 100mpd 13 . . 3 (𝜑 → ∃𝑥Q𝑏N (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))
102 rexcom 2661 . . 3 (∃𝑥Q𝑏N (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)) ↔ ∃𝑏N𝑥Q (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))
103101, 102sylib 122 . 2 (𝜑 → ∃𝑏N𝑥Q (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇)))
1042ffvelcdmda 5700 . . . . . 6 ((𝜑𝑏N) → (𝐹𝑏) ∈ P)
10557adantl 277 . . . . . 6 ((𝜑𝑏N) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
106104, 105, 59syl2anc 411 . . . . 5 ((𝜑𝑏N) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
1079adantr 276 . . . . 5 ((𝜑𝑏N) → ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩ ∈ P)
108106, 107, 87syl2anc 411 . . . 4 ((𝜑𝑏N) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P)
10912adantr 276 . . . 4 ((𝜑𝑏N) → 𝑇P)
110 ltdfpr 7590 . . . 4 (((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩) ∈ P𝑇P) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
111108, 109, 110syl2anc 411 . . 3 ((𝜑𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
112111rexbidva 2494 . 2 (𝜑 → (∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇 ↔ ∃𝑏N𝑥Q (𝑥 ∈ (2nd ‘(((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)) ∧ 𝑥 ∈ (1st𝑇))))
113103, 112mpbird 167 1 (𝜑 → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  {crab 2479  cop 3626   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  1st c1st 6205  2nd c2nd 6206  1oc1o 6476  [cec 6599  Ncnpi 7356   <N clti 7359   ~Q ceq 7363  Qcnq 7364   +Q cplq 7366  *Qcrq 7368   <Q cltq 7369  Pcnp 7375   +P cpp 7377  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  caucvgprprlemexb  7791
  Copyright terms: Public domain W3C validator