ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem19 GIF version

Theorem pythagtriplem19 12210
Description: Lemma for pythagtrip 12211. Introduce 𝑘 and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem19 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
Distinct variable groups:   𝐴,𝑚,𝑛,𝑘   𝐵,𝑚,𝑛,𝑘   𝐶,𝑚,𝑛,𝑘

Proof of Theorem pythagtriplem19
StepHypRef Expression
1 gcdnncl 11896 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
213adant3 1007 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
323ad2ant1 1008 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐴 gcd 𝐵) ∈ ℕ)
4 nnz 9206 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
5 nnz 9206 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
6 gcddvds 11892 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
74, 5, 6syl2an 287 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
873adant3 1007 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
98simpld 111 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
102nnzd 9308 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
112nnne0d 8898 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
1243ad2ant1 1008 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
13 dvdsval2 11726 . . . . . . . . 9 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
1410, 11, 12, 13syl3anc 1228 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
159, 14mpbid 146 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
16 nnre 8860 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
17163ad2ant1 1008 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℝ)
182nnred 8866 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ)
19 nngt0 8878 . . . . . . . . 9 (𝐴 ∈ ℕ → 0 < 𝐴)
20193ad2ant1 1008 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐴)
212nngt0d 8897 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐴 gcd 𝐵))
2217, 18, 20, 21divgt0d 8826 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐴 / (𝐴 gcd 𝐵)))
23 elnnz 9197 . . . . . . 7 ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < (𝐴 / (𝐴 gcd 𝐵))))
2415, 22, 23sylanbrc 414 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
25243ad2ant1 1008 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
268simprd 113 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
2753ad2ant2 1009 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
28 dvdsval2 11726 . . . . . . . . 9 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2910, 11, 27, 28syl3anc 1228 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
3026, 29mpbid 146 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)
31 nnre 8860 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
32313ad2ant2 1009 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℝ)
33 nngt0 8878 . . . . . . . . 9 (𝐵 ∈ ℕ → 0 < 𝐵)
34333ad2ant2 1009 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐵)
3532, 18, 34, 21divgt0d 8826 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐵 / (𝐴 gcd 𝐵)))
36 elnnz 9197 . . . . . . 7 ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < (𝐵 / (𝐴 gcd 𝐵))))
3730, 35, 36sylanbrc 414 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
38373ad2ant1 1008 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
39 dvdssq 11960 . . . . . . . . . . . . . . 15 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2)))
4010, 12, 39syl2anc 409 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2)))
41 dvdssq 11960 . . . . . . . . . . . . . . 15 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))
4210, 27, 41syl2anc 409 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))
4340, 42anbi12d 465 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) ↔ (((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))))
448, 43mpbid 146 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))
452nnsqcld 10605 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
4645nnzd 9308 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
47 nnsqcl 10520 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ)
48473ad2ant1 1008 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℕ)
4948nnzd 9308 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
50 nnsqcl 10520 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℕ)
51503ad2ant2 1009 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℕ)
5251nnzd 9308 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℤ)
53 dvds2add 11761 . . . . . . . . . . . . 13 ((((𝐴 gcd 𝐵)↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → ((((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
5446, 49, 52, 53syl3anc 1228 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
5544, 54mpd 13 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
5655adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
57 simpr 109 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
5856, 57breqtrd 4007 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2))
59 nnz 9206 . . . . . . . . . . . 12 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
60593ad2ant3 1010 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
61 dvdssq 11960 . . . . . . . . . . 11 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2)))
6210, 60, 61syl2anc 409 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2)))
6362adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2)))
6458, 63mpbird 166 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐴 gcd 𝐵) ∥ 𝐶)
65 dvdsval2 11726 . . . . . . . . . 10 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ))
6610, 11, 60, 65syl3anc 1228 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ))
6766adantr 274 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ))
6864, 67mpbid 146 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ)
69 nnre 8860 . . . . . . . . . 10 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
70693ad2ant3 1010 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℝ)
71 nngt0 8878 . . . . . . . . . 10 (𝐶 ∈ ℕ → 0 < 𝐶)
72713ad2ant3 1010 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐶)
7370, 18, 72, 21divgt0d 8826 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐶 / (𝐴 gcd 𝐵)))
7473adantr 274 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 / (𝐴 gcd 𝐵)))
75 elnnz 9197 . . . . . . 7 ((𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ ↔ ((𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < (𝐶 / (𝐴 gcd 𝐵))))
7668, 74, 75sylanbrc 414 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ)
77763adant3 1007 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ)
7848nncnd 8867 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
7951nncnd 8867 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
8045nncnd 8867 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∈ ℂ)
8145nnap0d 8899 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) # 0)
8278, 79, 80, 81divdirapd 8721 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2))))
83823ad2ant1 1008 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2))))
84 nncn 8861 . . . . . . . . . 10 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
85843ad2ant3 1010 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℂ)
862nncnd 8867 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
872nnap0d 8899 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) # 0)
8885, 86, 87sqdivapd 10597 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 / (𝐴 gcd 𝐵))↑2) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2)))
89883ad2ant1 1008 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ((𝐶 / (𝐴 gcd 𝐵))↑2) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2)))
90 oveq1 5848 . . . . . . . 8 (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2)))
91903ad2ant2 1009 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2)))
9289, 91eqtr4d 2201 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ((𝐶 / (𝐴 gcd 𝐵))↑2) = (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)))
93 nncn 8861 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
94933ad2ant1 1008 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℂ)
9594, 86, 87sqdivapd 10597 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵))↑2) = ((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)))
96 nncn 8861 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
97963ad2ant2 1009 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℂ)
9897, 86, 87sqdivapd 10597 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵 / (𝐴 gcd 𝐵))↑2) = ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2)))
9995, 98oveq12d 5859 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2))))
100993ad2ant1 1008 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2))))
10183, 92, 1003eqtr4rd 2209 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = ((𝐶 / (𝐴 gcd 𝐵))↑2))
102 gcddiv 11948 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
10312, 27, 2, 8, 102syl31anc 1231 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
10486, 87dividapd 8678 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
105103, 104eqtr3d 2200 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
1061053ad2ant1 1008 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
107 simp3 989 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))
108 pythagtriplem18 12209 . . . . 5 ((((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = ((𝐶 / (𝐴 gcd 𝐵))↑2) ∧ (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))))
10925, 38, 77, 101, 106, 107, 108syl312anc 1249 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))))
11094, 86, 87divcanap2d 8684 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) = 𝐴)
111110eqcomd 2171 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))))
11297, 86, 87divcanap2d 8684 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) = 𝐵)
113112eqcomd 2171 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))))
11485, 86, 87divcanap2d 8684 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) = 𝐶)
115114eqcomd 2171 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))))
116111, 113, 1153jca 1167 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵)))))
1171163ad2ant1 1008 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵)))))
118 oveq2 5849 . . . . . . . . . 10 ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) → ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))))
119118eqeq2d 2177 . . . . . . . . 9 ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ↔ 𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2)))))
1201193ad2ant1 1008 . . . . . . . 8 (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ↔ 𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2)))))
121 oveq2 5849 . . . . . . . . . 10 ((𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) → ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))))
122121eqeq2d 2177 . . . . . . . . 9 ((𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) → (𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ↔ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛)))))
1231223ad2ant2 1009 . . . . . . . 8 (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ↔ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛)))))
124 oveq2 5849 . . . . . . . . . 10 ((𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2)) → ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))
125124eqeq2d 2177 . . . . . . . . 9 ((𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2)) → (𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) ↔ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))
1261253ad2ant3 1010 . . . . . . . 8 (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) ↔ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))
127120, 123, 1263anbi123d 1302 . . . . . . 7 (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → ((𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵)))) ↔ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))))
128117, 127syl5ibcom 154 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))))
129128reximdv 2566 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))))
130129reximdv 2566 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))))
131109, 130mpd 13 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))
132 oveq1 5848 . . . . . . 7 (𝑘 = (𝐴 gcd 𝐵) → (𝑘 · ((𝑚↑2) − (𝑛↑2))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))))
133132eqeq2d 2177 . . . . . 6 (𝑘 = (𝐴 gcd 𝐵) → (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ↔ 𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2)))))
134 oveq1 5848 . . . . . . 7 (𝑘 = (𝐴 gcd 𝐵) → (𝑘 · (2 · (𝑚 · 𝑛))) = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))))
135134eqeq2d 2177 . . . . . 6 (𝑘 = (𝐴 gcd 𝐵) → (𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ↔ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛)))))
136 oveq1 5848 . . . . . . 7 (𝑘 = (𝐴 gcd 𝐵) → (𝑘 · ((𝑚↑2) + (𝑛↑2))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))
137136eqeq2d 2177 . . . . . 6 (𝑘 = (𝐴 gcd 𝐵) → (𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))) ↔ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))
138133, 135, 1373anbi123d 1302 . . . . 5 (𝑘 = (𝐴 gcd 𝐵) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))))
1391382rexbidv 2490 . . . 4 (𝑘 = (𝐴 gcd 𝐵) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))))
140139rspcev 2829 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ ∧ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))) → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
1413, 131, 140syl2anc 409 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
142 rexcom 2629 . . 3 (∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑘 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
143 rexcom 2629 . . . 4 (∃𝑘 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
144143rexbii 2472 . . 3 (∃𝑛 ∈ ℕ ∃𝑘 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
145142, 144bitri 183 . 2 (∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
146141, 145sylib 121 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wne 2335  wrex 2444   class class class wbr 3981  (class class class)co 5841  cc 7747  cr 7748  0cc0 7749  1c1 7750   + caddc 7752   · cmul 7754   < clt 7929  cmin 8065   / cdiv 8564  cn 8853  2c2 8904  cz 9187  cexp 10450  cdvds 11723   gcd cgcd 11871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036
This theorem is referenced by:  pythagtrip  12211
  Copyright terms: Public domain W3C validator