ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomprg GIF version

Theorem addcomprg 7624
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
addcomprg ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))

Proof of Theorem addcomprg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7521 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 elprnql 7527 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → 𝑦Q)
31, 2sylan 283 . . . . . . . 8 ((𝐵P𝑦 ∈ (1st𝐵)) → 𝑦Q)
4 prop 7521 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
5 elprnql 7527 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
64, 5sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
7 addcomnqg 7427 . . . . . . . . . . . . 13 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦))
87eqeq2d 2201 . . . . . . . . . . . 12 ((𝑦Q𝑧Q) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
96, 8sylan2 286 . . . . . . . . . . 11 ((𝑦Q ∧ (𝐴P𝑧 ∈ (1st𝐴))) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
109anassrs 400 . . . . . . . . . 10 (((𝑦Q𝐴P) ∧ 𝑧 ∈ (1st𝐴)) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
1110rexbidva 2487 . . . . . . . . 9 ((𝑦Q𝐴P) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
1211ancoms 268 . . . . . . . 8 ((𝐴P𝑦Q) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
133, 12sylan2 286 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑦 ∈ (1st𝐵))) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
1413anassrs 400 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑦 ∈ (1st𝐵)) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
1514rexbidva 2487 . . . . 5 ((𝐴P𝐵P) → (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
16 rexcom 2654 . . . . 5 (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦))
1715, 16bitrdi 196 . . . 4 ((𝐴P𝐵P) → (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)))
1817rabbidv 2745 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)} = {𝑥Q ∣ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)})
19 elprnqu 7528 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
201, 19sylan 283 . . . . . . . 8 ((𝐵P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
21 elprnqu 7528 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
224, 21sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
2322, 8sylan2 286 . . . . . . . . . . 11 ((𝑦Q ∧ (𝐴P𝑧 ∈ (2nd𝐴))) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
2423anassrs 400 . . . . . . . . . 10 (((𝑦Q𝐴P) ∧ 𝑧 ∈ (2nd𝐴)) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
2524rexbidva 2487 . . . . . . . . 9 ((𝑦Q𝐴P) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2625ancoms 268 . . . . . . . 8 ((𝐴P𝑦Q) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2720, 26sylan2 286 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑦 ∈ (2nd𝐵))) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2827anassrs 400 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑦 ∈ (2nd𝐵)) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2928rexbidva 2487 . . . . 5 ((𝐴P𝐵P) → (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
30 rexcom 2654 . . . . 5 (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦))
3129, 30bitrdi 196 . . . 4 ((𝐴P𝐵P) → (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)))
3231rabbidv 2745 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)} = {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)})
3318, 32opeq12d 3808 . 2 ((𝐴P𝐵P) → ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)}⟩ = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)}⟩)
34 plpvlu 7584 . . 3 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)}⟩)
3534ancoms 268 . 2 ((𝐴P𝐵P) → (𝐵 +P 𝐴) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)}⟩)
36 plpvlu 7584 . 2 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)}⟩)
3733, 35, 363eqtr4rd 2233 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wrex 2469  {crab 2472  cop 3617  cfv 5242  (class class class)co 5906  1st c1st 6178  2nd c2nd 6179  Qcnq 7326   +Q cplq 7328  Pcnp 7337   +P cpp 7339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-iord 4391  df-on 4393  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-recs 6345  df-irdg 6410  df-oadd 6460  df-omul 6461  df-er 6574  df-ec 6576  df-qs 6580  df-ni 7350  df-pli 7351  df-mi 7352  df-plpq 7390  df-enq 7393  df-nqqs 7394  df-plqqs 7395  df-inp 7512  df-iplp 7514
This theorem is referenced by:  prplnqu  7666  addextpr  7667  caucvgprlemcanl  7690  caucvgprprlemnkltj  7735  caucvgprprlemnbj  7739  caucvgprprlemmu  7741  caucvgprprlemloc  7749  caucvgprprlemexbt  7752  caucvgprprlemexb  7753  caucvgprprlemaddq  7754  enrer  7781  addcmpblnr  7785  mulcmpblnrlemg  7786  ltsrprg  7793  addcomsrg  7801  mulcomsrg  7803  mulasssrg  7804  distrsrg  7805  lttrsr  7808  ltposr  7809  ltsosr  7810  0lt1sr  7811  0idsr  7813  1idsr  7814  ltasrg  7816  recexgt0sr  7819  mulgt0sr  7824  aptisr  7825  mulextsr1lem  7826  archsr  7828  srpospr  7829  prsrpos  7831  prsradd  7832  prsrlt  7833  ltpsrprg  7849  map2psrprg  7851  pitonnlem1p1  7892  pitoregt0  7895  recidpirqlemcalc  7903
  Copyright terms: Public domain W3C validator