ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomprg GIF version

Theorem addcomprg 7761
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
addcomprg ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))

Proof of Theorem addcomprg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7658 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 elprnql 7664 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → 𝑦Q)
31, 2sylan 283 . . . . . . . 8 ((𝐵P𝑦 ∈ (1st𝐵)) → 𝑦Q)
4 prop 7658 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
5 elprnql 7664 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
64, 5sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
7 addcomnqg 7564 . . . . . . . . . . . . 13 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦))
87eqeq2d 2241 . . . . . . . . . . . 12 ((𝑦Q𝑧Q) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
96, 8sylan2 286 . . . . . . . . . . 11 ((𝑦Q ∧ (𝐴P𝑧 ∈ (1st𝐴))) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
109anassrs 400 . . . . . . . . . 10 (((𝑦Q𝐴P) ∧ 𝑧 ∈ (1st𝐴)) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
1110rexbidva 2527 . . . . . . . . 9 ((𝑦Q𝐴P) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
1211ancoms 268 . . . . . . . 8 ((𝐴P𝑦Q) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
133, 12sylan2 286 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑦 ∈ (1st𝐵))) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
1413anassrs 400 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑦 ∈ (1st𝐵)) → (∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
1514rexbidva 2527 . . . . 5 ((𝐴P𝐵P) → (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦)))
16 rexcom 2695 . . . . 5 (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦))
1715, 16bitrdi 196 . . . 4 ((𝐴P𝐵P) → (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)))
1817rabbidv 2788 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)} = {𝑥Q ∣ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)})
19 elprnqu 7665 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
201, 19sylan 283 . . . . . . . 8 ((𝐵P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
21 elprnqu 7665 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
224, 21sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
2322, 8sylan2 286 . . . . . . . . . . 11 ((𝑦Q ∧ (𝐴P𝑧 ∈ (2nd𝐴))) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
2423anassrs 400 . . . . . . . . . 10 (((𝑦Q𝐴P) ∧ 𝑧 ∈ (2nd𝐴)) → (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)))
2524rexbidva 2527 . . . . . . . . 9 ((𝑦Q𝐴P) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2625ancoms 268 . . . . . . . 8 ((𝐴P𝑦Q) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2720, 26sylan2 286 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑦 ∈ (2nd𝐵))) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2827anassrs 400 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑦 ∈ (2nd𝐵)) → (∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
2928rexbidva 2527 . . . . 5 ((𝐴P𝐵P) → (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦)))
30 rexcom 2695 . . . . 5 (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦))
3129, 30bitrdi 196 . . . 4 ((𝐴P𝐵P) → (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)))
3231rabbidv 2788 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)} = {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)})
3318, 32opeq12d 3864 . 2 ((𝐴P𝐵P) → ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)}⟩ = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)}⟩)
34 plpvlu 7721 . . 3 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)}⟩)
3534ancoms 268 . 2 ((𝐴P𝐵P) → (𝐵 +P 𝐴) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐴)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐴)𝑥 = (𝑦 +Q 𝑧)}⟩)
36 plpvlu 7721 . 2 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑥 = (𝑧 +Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑥 = (𝑧 +Q 𝑦)}⟩)
3733, 35, 363eqtr4rd 2273 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  {crab 2512  cop 3669  cfv 5317  (class class class)co 6000  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   +Q cplq 7465  Pcnp 7474   +P cpp 7476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-plpq 7527  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-inp 7649  df-iplp 7651
This theorem is referenced by:  prplnqu  7803  addextpr  7804  caucvgprlemcanl  7827  caucvgprprlemnkltj  7872  caucvgprprlemnbj  7876  caucvgprprlemmu  7878  caucvgprprlemloc  7886  caucvgprprlemexbt  7889  caucvgprprlemexb  7890  caucvgprprlemaddq  7891  enrer  7918  addcmpblnr  7922  mulcmpblnrlemg  7923  ltsrprg  7930  addcomsrg  7938  mulcomsrg  7940  mulasssrg  7941  distrsrg  7942  lttrsr  7945  ltposr  7946  ltsosr  7947  0lt1sr  7948  0idsr  7950  1idsr  7951  ltasrg  7953  recexgt0sr  7956  mulgt0sr  7961  aptisr  7962  mulextsr1lem  7963  archsr  7965  srpospr  7966  prsrpos  7968  prsradd  7969  prsrlt  7970  ltpsrprg  7986  map2psrprg  7988  pitonnlem1p1  8029  pitoregt0  8032  recidpirqlemcalc  8040
  Copyright terms: Public domain W3C validator