ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomprg GIF version

Theorem mulcomprg 7542
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
mulcomprg ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))

Proof of Theorem mulcomprg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7437 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 elprnql 7443 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑧 ∈ (1st𝐵)) → 𝑧Q)
31, 2sylan 281 . . . . . . . 8 ((𝐵P𝑧 ∈ (1st𝐵)) → 𝑧Q)
4 prop 7437 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
5 elprnql 7443 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
64, 5sylan 281 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7 mulcomnqg 7345 . . . . . . . . . . . . 13 ((𝑧Q𝑦Q) → (𝑧 ·Q 𝑦) = (𝑦 ·Q 𝑧))
87eqeq2d 2182 . . . . . . . . . . . 12 ((𝑧Q𝑦Q) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
96, 8sylan2 284 . . . . . . . . . . 11 ((𝑧Q ∧ (𝐴P𝑦 ∈ (1st𝐴))) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
109anassrs 398 . . . . . . . . . 10 (((𝑧Q𝐴P) ∧ 𝑦 ∈ (1st𝐴)) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
1110rexbidva 2467 . . . . . . . . 9 ((𝑧Q𝐴P) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1211ancoms 266 . . . . . . . 8 ((𝐴P𝑧Q) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
133, 12sylan2 284 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑧 ∈ (1st𝐵))) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1413anassrs 398 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑧 ∈ (1st𝐵)) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1514rexbidva 2467 . . . . 5 ((𝐴P𝐵P) → (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
16 rexcom 2634 . . . . 5 (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧))
1715, 16bitrdi 195 . . . 4 ((𝐴P𝐵P) → (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)))
1817rabbidv 2719 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)} = {𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)})
19 elprnqu 7444 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑧 ∈ (2nd𝐵)) → 𝑧Q)
201, 19sylan 281 . . . . . . . 8 ((𝐵P𝑧 ∈ (2nd𝐵)) → 𝑧Q)
21 elprnqu 7444 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
224, 21sylan 281 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2322, 8sylan2 284 . . . . . . . . . . 11 ((𝑧Q ∧ (𝐴P𝑦 ∈ (2nd𝐴))) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
2423anassrs 398 . . . . . . . . . 10 (((𝑧Q𝐴P) ∧ 𝑦 ∈ (2nd𝐴)) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
2524rexbidva 2467 . . . . . . . . 9 ((𝑧Q𝐴P) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2625ancoms 266 . . . . . . . 8 ((𝐴P𝑧Q) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2720, 26sylan2 284 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑧 ∈ (2nd𝐵))) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2827anassrs 398 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑧 ∈ (2nd𝐵)) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2928rexbidva 2467 . . . . 5 ((𝐴P𝐵P) → (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
30 rexcom 2634 . . . . 5 (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧))
3129, 30bitrdi 195 . . . 4 ((𝐴P𝐵P) → (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)))
3231rabbidv 2719 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)} = {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)})
3318, 32opeq12d 3773 . 2 ((𝐴P𝐵P) → ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩ = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
34 mpvlu 7501 . . 3 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩)
3534ancoms 266 . 2 ((𝐴P𝐵P) → (𝐵 ·P 𝐴) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩)
36 mpvlu 7501 . 2 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
3733, 35, 363eqtr4rd 2214 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  {crab 2452  cop 3586  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   ·Q cmq 7245  Pcnp 7253   ·P cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-mqqs 7312  df-inp 7428  df-imp 7431
This theorem is referenced by:  ltmprr  7604  mulcmpblnrlemg  7702  mulcomsrg  7719  mulasssrg  7720  m1m1sr  7723  recexgt0sr  7735  mulgt0sr  7740  mulextsr1lem  7742  recidpirqlemcalc  7819
  Copyright terms: Public domain W3C validator