ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomprg GIF version

Theorem mulcomprg 7570
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
mulcomprg ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))

Proof of Theorem mulcomprg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7465 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 elprnql 7471 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑧 ∈ (1st𝐵)) → 𝑧Q)
31, 2sylan 283 . . . . . . . 8 ((𝐵P𝑧 ∈ (1st𝐵)) → 𝑧Q)
4 prop 7465 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
5 elprnql 7471 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
64, 5sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7 mulcomnqg 7373 . . . . . . . . . . . . 13 ((𝑧Q𝑦Q) → (𝑧 ·Q 𝑦) = (𝑦 ·Q 𝑧))
87eqeq2d 2189 . . . . . . . . . . . 12 ((𝑧Q𝑦Q) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
96, 8sylan2 286 . . . . . . . . . . 11 ((𝑧Q ∧ (𝐴P𝑦 ∈ (1st𝐴))) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
109anassrs 400 . . . . . . . . . 10 (((𝑧Q𝐴P) ∧ 𝑦 ∈ (1st𝐴)) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
1110rexbidva 2474 . . . . . . . . 9 ((𝑧Q𝐴P) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1211ancoms 268 . . . . . . . 8 ((𝐴P𝑧Q) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
133, 12sylan2 286 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑧 ∈ (1st𝐵))) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1413anassrs 400 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑧 ∈ (1st𝐵)) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1514rexbidva 2474 . . . . 5 ((𝐴P𝐵P) → (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
16 rexcom 2641 . . . . 5 (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧))
1715, 16bitrdi 196 . . . 4 ((𝐴P𝐵P) → (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)))
1817rabbidv 2726 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)} = {𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)})
19 elprnqu 7472 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑧 ∈ (2nd𝐵)) → 𝑧Q)
201, 19sylan 283 . . . . . . . 8 ((𝐵P𝑧 ∈ (2nd𝐵)) → 𝑧Q)
21 elprnqu 7472 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
224, 21sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2322, 8sylan2 286 . . . . . . . . . . 11 ((𝑧Q ∧ (𝐴P𝑦 ∈ (2nd𝐴))) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
2423anassrs 400 . . . . . . . . . 10 (((𝑧Q𝐴P) ∧ 𝑦 ∈ (2nd𝐴)) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
2524rexbidva 2474 . . . . . . . . 9 ((𝑧Q𝐴P) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2625ancoms 268 . . . . . . . 8 ((𝐴P𝑧Q) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2720, 26sylan2 286 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑧 ∈ (2nd𝐵))) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2827anassrs 400 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑧 ∈ (2nd𝐵)) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2928rexbidva 2474 . . . . 5 ((𝐴P𝐵P) → (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
30 rexcom 2641 . . . . 5 (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧))
3129, 30bitrdi 196 . . . 4 ((𝐴P𝐵P) → (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)))
3231rabbidv 2726 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)} = {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)})
3318, 32opeq12d 3784 . 2 ((𝐴P𝐵P) → ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩ = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
34 mpvlu 7529 . . 3 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩)
3534ancoms 268 . 2 ((𝐴P𝐵P) → (𝐵 ·P 𝐴) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩)
36 mpvlu 7529 . 2 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
3733, 35, 363eqtr4rd 2221 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  cop 3594  cfv 5212  (class class class)co 5869  1st c1st 6133  2nd c2nd 6134  Qcnq 7270   ·Q cmq 7273  Pcnp 7281   ·P cmp 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-mqqs 7340  df-inp 7456  df-imp 7459
This theorem is referenced by:  ltmprr  7632  mulcmpblnrlemg  7730  mulcomsrg  7747  mulasssrg  7748  m1m1sr  7751  recexgt0sr  7763  mulgt0sr  7768  mulextsr1lem  7770  recidpirqlemcalc  7847
  Copyright terms: Public domain W3C validator