ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomprg GIF version

Theorem mulcomprg 7200
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
mulcomprg ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))

Proof of Theorem mulcomprg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7095 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 elprnql 7101 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑧 ∈ (1st𝐵)) → 𝑧Q)
31, 2sylan 278 . . . . . . . 8 ((𝐵P𝑧 ∈ (1st𝐵)) → 𝑧Q)
4 prop 7095 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
5 elprnql 7101 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
64, 5sylan 278 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7 mulcomnqg 7003 . . . . . . . . . . . . 13 ((𝑧Q𝑦Q) → (𝑧 ·Q 𝑦) = (𝑦 ·Q 𝑧))
87eqeq2d 2100 . . . . . . . . . . . 12 ((𝑧Q𝑦Q) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
96, 8sylan2 281 . . . . . . . . . . 11 ((𝑧Q ∧ (𝐴P𝑦 ∈ (1st𝐴))) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
109anassrs 393 . . . . . . . . . 10 (((𝑧Q𝐴P) ∧ 𝑦 ∈ (1st𝐴)) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
1110rexbidva 2378 . . . . . . . . 9 ((𝑧Q𝐴P) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1211ancoms 265 . . . . . . . 8 ((𝐴P𝑧Q) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
133, 12sylan2 281 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑧 ∈ (1st𝐵))) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1413anassrs 393 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑧 ∈ (1st𝐵)) → (∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
1514rexbidva 2378 . . . . 5 ((𝐴P𝐵P) → (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧)))
16 rexcom 2532 . . . . 5 (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧))
1715, 16syl6bb 195 . . . 4 ((𝐴P𝐵P) → (∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)))
1817rabbidv 2609 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)} = {𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)})
19 elprnqu 7102 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑧 ∈ (2nd𝐵)) → 𝑧Q)
201, 19sylan 278 . . . . . . . 8 ((𝐵P𝑧 ∈ (2nd𝐵)) → 𝑧Q)
21 elprnqu 7102 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
224, 21sylan 278 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2322, 8sylan2 281 . . . . . . . . . . 11 ((𝑧Q ∧ (𝐴P𝑦 ∈ (2nd𝐴))) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
2423anassrs 393 . . . . . . . . . 10 (((𝑧Q𝐴P) ∧ 𝑦 ∈ (2nd𝐴)) → (𝑥 = (𝑧 ·Q 𝑦) ↔ 𝑥 = (𝑦 ·Q 𝑧)))
2524rexbidva 2378 . . . . . . . . 9 ((𝑧Q𝐴P) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2625ancoms 265 . . . . . . . 8 ((𝐴P𝑧Q) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2720, 26sylan2 281 . . . . . . 7 ((𝐴P ∧ (𝐵P𝑧 ∈ (2nd𝐵))) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2827anassrs 393 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑧 ∈ (2nd𝐵)) → (∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
2928rexbidva 2378 . . . . 5 ((𝐴P𝐵P) → (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧)))
30 rexcom 2532 . . . . 5 (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧))
3129, 30syl6bb 195 . . . 4 ((𝐴P𝐵P) → (∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)))
3231rabbidv 2609 . . 3 ((𝐴P𝐵P) → {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)} = {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)})
3318, 32opeq12d 3636 . 2 ((𝐴P𝐵P) → ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩ = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
34 mpvlu 7159 . . 3 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩)
3534ancoms 265 . 2 ((𝐴P𝐵P) → (𝐵 ·P 𝐴) = ⟨{𝑥Q ∣ ∃𝑧 ∈ (1st𝐵)∃𝑦 ∈ (1st𝐴)𝑥 = (𝑧 ·Q 𝑦)}, {𝑥Q ∣ ∃𝑧 ∈ (2nd𝐵)∃𝑦 ∈ (2nd𝐴)𝑥 = (𝑧 ·Q 𝑦)}⟩)
36 mpvlu 7159 . 2 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
3733, 35, 363eqtr4rd 2132 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  wrex 2361  {crab 2364  cop 3453  cfv 5028  (class class class)co 5666  1st c1st 5923  2nd c2nd 5924  Qcnq 6900   ·Q cmq 6903  Pcnp 6911   ·P cmp 6914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-oadd 6199  df-omul 6200  df-er 6306  df-ec 6308  df-qs 6312  df-ni 6924  df-mi 6926  df-mpq 6965  df-enq 6967  df-nqqs 6968  df-mqqs 6970  df-inp 7086  df-imp 7089
This theorem is referenced by:  ltmprr  7262  mulcmpblnrlemg  7347  mulcomsrg  7364  mulasssrg  7365  m1m1sr  7368  recexgt0sr  7380  mulgt0sr  7384  mulextsr1lem  7386  recidpirqlemcalc  7455
  Copyright terms: Public domain W3C validator