ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqovcd GIF version

Theorem seqovcd 10248
Description: A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10249 and seq1cd 10250 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqovcd.f ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
seqovcd.pl ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
Assertion
Ref Expression
seqovcd ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
Distinct variable groups:   𝑥, + ,𝑦,𝑤,𝑧   𝑥,𝐶,𝑦,𝑤,𝑧   𝑥,𝐷,𝑦   𝑥,𝐹,𝑤,𝑧   𝑥,𝑀,𝑤,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐷(𝑧,𝑤)   𝐹(𝑦)   𝑀(𝑦)

Proof of Theorem seqovcd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 520 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑥 ∈ (ℤ𝑀))
2 simprr 521 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑦𝐶)
3 seqovcd.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
43ralrimivva 2514 . . . . . 6 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
5 oveq1 5781 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 + 𝑦) = (𝑎 + 𝑦))
65eleq1d 2208 . . . . . . 7 (𝑥 = 𝑎 → ((𝑥 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑦) ∈ 𝐶))
7 oveq2 5782 . . . . . . . 8 (𝑦 = 𝑏 → (𝑎 + 𝑦) = (𝑎 + 𝑏))
87eleq1d 2208 . . . . . . 7 (𝑦 = 𝑏 → ((𝑎 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑏) ∈ 𝐶))
96, 8cbvral2v 2665 . . . . . 6 (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 ↔ ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
104, 9sylib 121 . . . . 5 (𝜑 → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
1110adantr 274 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
12 fveq2 5421 . . . . . . 7 (𝑎 = (𝑥 + 1) → (𝐹𝑎) = (𝐹‘(𝑥 + 1)))
1312eleq1d 2208 . . . . . 6 (𝑎 = (𝑥 + 1) → ((𝐹𝑎) ∈ 𝐷 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝐷))
14 seqovcd.f . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
1514ralrimiva 2505 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷)
16 fveq2 5421 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1716eleq1d 2208 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹𝑎) ∈ 𝐷))
1817cbvralv 2654 . . . . . . . 8 (∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷 ↔ ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
1915, 18sylib 121 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
2019adantr 274 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
21 eluzp1p1 9363 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
221, 21syl 14 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
2313, 20, 22rspcdva 2794 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝐹‘(𝑥 + 1)) ∈ 𝐷)
24 oveq12 5783 . . . . . . 7 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → (𝑎 + 𝑏) = (𝑦 + (𝐹‘(𝑥 + 1))))
2524eleq1d 2208 . . . . . 6 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → ((𝑎 + 𝑏) ∈ 𝐶 ↔ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
2625rspc2gv 2801 . . . . 5 ((𝑦𝐶 ∧ (𝐹‘(𝑥 + 1)) ∈ 𝐷) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
272, 23, 26syl2anc 408 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
2811, 27mpd 13 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶)
29 fvoveq1 5797 . . . . 5 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
3029oveq2d 5790 . . . 4 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
31 oveq1 5781 . . . 4 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
32 eqid 2139 . . . 4 (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3330, 31, 32ovmpog 5905 . . 3 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
341, 2, 28, 33syl3anc 1216 . 2 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3534, 28eqeltrd 2216 1 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  cfv 5123  (class class class)co 5774  cmpo 5776  1c1 7633   + caddc 7635  cuz 9338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339
This theorem is referenced by:  seqf2  10249  seq1cd  10250  seqp1cd  10251
  Copyright terms: Public domain W3C validator