ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqovcd GIF version

Theorem seqovcd 10398
Description: A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10399 and seq1cd 10400 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqovcd.f ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
seqovcd.pl ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
Assertion
Ref Expression
seqovcd ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
Distinct variable groups:   𝑥, + ,𝑦,𝑤,𝑧   𝑥,𝐶,𝑦,𝑤,𝑧   𝑥,𝐷,𝑦   𝑥,𝐹,𝑤,𝑧   𝑥,𝑀,𝑤,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐷(𝑧,𝑤)   𝐹(𝑦)   𝑀(𝑦)

Proof of Theorem seqovcd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑥 ∈ (ℤ𝑀))
2 simprr 522 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑦𝐶)
3 seqovcd.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
43ralrimivva 2548 . . . . . 6 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
5 oveq1 5849 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 + 𝑦) = (𝑎 + 𝑦))
65eleq1d 2235 . . . . . . 7 (𝑥 = 𝑎 → ((𝑥 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑦) ∈ 𝐶))
7 oveq2 5850 . . . . . . . 8 (𝑦 = 𝑏 → (𝑎 + 𝑦) = (𝑎 + 𝑏))
87eleq1d 2235 . . . . . . 7 (𝑦 = 𝑏 → ((𝑎 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑏) ∈ 𝐶))
96, 8cbvral2v 2705 . . . . . 6 (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 ↔ ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
104, 9sylib 121 . . . . 5 (𝜑 → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
1110adantr 274 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
12 fveq2 5486 . . . . . . 7 (𝑎 = (𝑥 + 1) → (𝐹𝑎) = (𝐹‘(𝑥 + 1)))
1312eleq1d 2235 . . . . . 6 (𝑎 = (𝑥 + 1) → ((𝐹𝑎) ∈ 𝐷 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝐷))
14 seqovcd.f . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
1514ralrimiva 2539 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷)
16 fveq2 5486 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1716eleq1d 2235 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹𝑎) ∈ 𝐷))
1817cbvralv 2692 . . . . . . . 8 (∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷 ↔ ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
1915, 18sylib 121 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
2019adantr 274 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
21 eluzp1p1 9491 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
221, 21syl 14 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
2313, 20, 22rspcdva 2835 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝐹‘(𝑥 + 1)) ∈ 𝐷)
24 oveq12 5851 . . . . . . 7 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → (𝑎 + 𝑏) = (𝑦 + (𝐹‘(𝑥 + 1))))
2524eleq1d 2235 . . . . . 6 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → ((𝑎 + 𝑏) ∈ 𝐶 ↔ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
2625rspc2gv 2842 . . . . 5 ((𝑦𝐶 ∧ (𝐹‘(𝑥 + 1)) ∈ 𝐷) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
272, 23, 26syl2anc 409 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
2811, 27mpd 13 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶)
29 fvoveq1 5865 . . . . 5 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
3029oveq2d 5858 . . . 4 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
31 oveq1 5849 . . . 4 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
32 eqid 2165 . . . 4 (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3330, 31, 32ovmpog 5976 . . 3 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
341, 2, 28, 33syl3anc 1228 . 2 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3534, 28eqeltrd 2243 1 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  cfv 5188  (class class class)co 5842  cmpo 5844  1c1 7754   + caddc 7756  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  seqf2  10399  seq1cd  10400  seqp1cd  10401
  Copyright terms: Public domain W3C validator