ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqvalcd GIF version

Theorem seqvalcd 10604
Description: Value of the sequence builder function. Similar to seq3val 10603 but the classes 𝐷 (type of each term) and 𝐶 (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
seqvalcd.m (𝜑𝑀 ∈ ℤ)
seqvalcd.r 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
seqvalcd.f0 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqvalcd.pl ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqvalcd.fp1 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqvalcd (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
Distinct variable groups:   𝑥, + ,𝑦,𝑤,𝑧   𝑥,𝐶,𝑦,𝑤,𝑧   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦,𝑤,𝑧   𝑥,𝑀,𝑦,𝑤,𝑧   𝑥,𝑅,𝑦,𝑤,𝑧   𝜑,𝑥,𝑦,𝑤,𝑧
Allowed substitution hints:   𝐷(𝑧,𝑤)

Proof of Theorem seqvalcd
Dummy variables 𝑎 𝑏 𝑐 𝑘 𝑛 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10591 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 seqvalcd.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 seqvalcd.f0 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ 𝐶)
4 ssv 3214 . . . . . . 7 𝐶 ⊆ V
54a1i 9 . . . . . 6 (𝜑𝐶 ⊆ V)
6 eqidd 2205 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))))
7 simprr 531 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑤 = 𝑦)
8 simprl 529 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑧 = 𝑥)
98fvoveq1d 5965 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
107, 9oveq12d 5961 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
11 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑥 ∈ (ℤ𝑀))
12 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑦𝐶)
13 seqvalcd.pl . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
1413ralrimivva 2587 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
15 oveq1 5950 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥 + 𝑦) = (𝑎 + 𝑦))
1615eleq1d 2273 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑥 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑦) ∈ 𝐶))
17 oveq2 5951 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (𝑎 + 𝑦) = (𝑎 + 𝑏))
1817eleq1d 2273 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ((𝑎 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑏) ∈ 𝐶))
1916, 18cbvral2v 2750 . . . . . . . . . . 11 (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 ↔ ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
2014, 19sylib 122 . . . . . . . . . 10 (𝜑 → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
2120adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
22 fveq2 5575 . . . . . . . . . . . 12 (𝑎 = (𝑥 + 1) → (𝐹𝑎) = (𝐹‘(𝑥 + 1)))
2322eleq1d 2273 . . . . . . . . . . 11 (𝑎 = (𝑥 + 1) → ((𝐹𝑎) ∈ 𝐷 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝐷))
24 seqvalcd.fp1 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
2524ralrimiva 2578 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷)
26 fveq2 5575 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
2726eleq1d 2273 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹𝑎) ∈ 𝐷))
2827cbvralv 2737 . . . . . . . . . . . . 13 (∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷 ↔ ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
2925, 28sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
3029adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
31 eluzp1p1 9673 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
3211, 31syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
3323, 30, 32rspcdva 2881 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝐹‘(𝑥 + 1)) ∈ 𝐷)
34 oveq12 5952 . . . . . . . . . . . 12 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → (𝑎 + 𝑏) = (𝑦 + (𝐹‘(𝑥 + 1))))
3534eleq1d 2273 . . . . . . . . . . 11 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → ((𝑎 + 𝑏) ∈ 𝐶 ↔ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
3635rspc2gv 2888 . . . . . . . . . 10 ((𝑦𝐶 ∧ (𝐹‘(𝑥 + 1)) ∈ 𝐷) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
3712, 33, 36syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
3821, 37mpd 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶)
396, 10, 11, 12, 38ovmpod 6072 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
4039, 38eqeltrd 2281 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
41 seqvalcd.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
422, 3, 5, 40, 41frecuzrdgrclt 10558 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝑀) × 𝐶))
4342ffnd 5425 . . . 4 (𝜑𝑅 Fn ω)
44 1st2nd2 6260 . . . . . . . . . . . 12 (𝑢 ∈ ((ℤ𝑀) × 𝐶) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
4544adantl 277 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
4645fveq2d 5579 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st𝑢), (2nd𝑢)⟩))
47 df-ov 5946 . . . . . . . . . 10 ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st𝑢), (2nd𝑢)⟩)
4846, 47eqtr4di 2255 . . . . . . . . 9 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)))
49 xp1st 6250 . . . . . . . . . . 11 (𝑢 ∈ ((ℤ𝑀) × 𝐶) → (1st𝑢) ∈ (ℤ𝑀))
5049adantl 277 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (1st𝑢) ∈ (ℤ𝑀))
51 xp2nd 6251 . . . . . . . . . . . 12 (𝑢 ∈ ((ℤ𝑀) × 𝐶) → (2nd𝑢) ∈ 𝐶)
5251adantl 277 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (2nd𝑢) ∈ 𝐶)
5352elexd 2784 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (2nd𝑢) ∈ V)
54 peano2uz 9703 . . . . . . . . . . . 12 ((1st𝑢) ∈ (ℤ𝑀) → ((1st𝑢) + 1) ∈ (ℤ𝑀))
5550, 54syl 14 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢) + 1) ∈ (ℤ𝑀))
5614adantr 276 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
57 fveq2 5575 . . . . . . . . . . . . . . 15 (𝑥 = ((1st𝑢) + 1) → (𝐹𝑥) = (𝐹‘((1st𝑢) + 1)))
5857eleq1d 2273 . . . . . . . . . . . . . 14 (𝑥 = ((1st𝑢) + 1) → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹‘((1st𝑢) + 1)) ∈ 𝐷))
5925adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷)
60 eluzp1p1 9673 . . . . . . . . . . . . . . 15 ((1st𝑢) ∈ (ℤ𝑀) → ((1st𝑢) + 1) ∈ (ℤ‘(𝑀 + 1)))
6150, 60syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢) + 1) ∈ (ℤ‘(𝑀 + 1)))
6258, 59, 61rspcdva 2881 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (𝐹‘((1st𝑢) + 1)) ∈ 𝐷)
63 oveq12 5952 . . . . . . . . . . . . . . 15 ((𝑥 = (2nd𝑢) ∧ 𝑦 = (𝐹‘((1st𝑢) + 1))) → (𝑥 + 𝑦) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
6463eleq1d 2273 . . . . . . . . . . . . . 14 ((𝑥 = (2nd𝑢) ∧ 𝑦 = (𝐹‘((1st𝑢) + 1))) → ((𝑥 + 𝑦) ∈ 𝐶 ↔ ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶))
6564rspc2gv 2888 . . . . . . . . . . . . 13 (((2nd𝑢) ∈ 𝐶 ∧ (𝐹‘((1st𝑢) + 1)) ∈ 𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶))
6652, 62, 65syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶))
6756, 66mpd 13 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶)
6855, 67opelxpd 4707 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶))
69 oveq1 5950 . . . . . . . . . . . 12 (𝑥 = (1st𝑢) → (𝑥 + 1) = ((1st𝑢) + 1))
70 fvoveq1 5966 . . . . . . . . . . . . 13 (𝑥 = (1st𝑢) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st𝑢) + 1)))
7170oveq2d 5959 . . . . . . . . . . . 12 (𝑥 = (1st𝑢) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st𝑢) + 1))))
7269, 71opeq12d 3826 . . . . . . . . . . 11 (𝑥 = (1st𝑢) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨((1st𝑢) + 1), (𝑦 + (𝐹‘((1st𝑢) + 1)))⟩)
73 oveq1 5950 . . . . . . . . . . . 12 (𝑦 = (2nd𝑢) → (𝑦 + (𝐹‘((1st𝑢) + 1))) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
7473opeq2d 3825 . . . . . . . . . . 11 (𝑦 = (2nd𝑢) → ⟨((1st𝑢) + 1), (𝑦 + (𝐹‘((1st𝑢) + 1)))⟩ = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
75 eqid 2204 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)
7672, 74, 75ovmpog 6079 . . . . . . . . . 10 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ V ∧ ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
7750, 53, 68, 76syl3anc 1249 . . . . . . . . 9 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
7848, 77eqtrd 2237 . . . . . . . 8 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
7978, 68eqeltrd 2281 . . . . . . 7 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
8079ralrimiva 2578 . . . . . 6 (𝜑 → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
81 uzid 9661 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
822, 81syl 14 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
8382, 3opelxpd 4707 . . . . . 6 (𝜑 → ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶))
8480, 83jca 306 . . . . 5 (𝜑 → (∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶)))
85 frecfcl 6490 . . . . 5 ((∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶)) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩):ω⟶((ℤ𝑀) × 𝐶))
86 ffn 5424 . . . . 5 (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩):ω⟶((ℤ𝑀) × 𝐶) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) Fn ω)
8784, 85, 863syl 17 . . . 4 (𝜑 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) Fn ω)
88 fveq2 5575 . . . . . . . 8 (𝑐 = ∅ → (𝑅𝑐) = (𝑅‘∅))
89 fveq2 5575 . . . . . . . 8 (𝑐 = ∅ → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))
9088, 89eqeq12d 2219 . . . . . . 7 (𝑐 = ∅ → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅)))
9190imbi2d 230 . . . . . 6 (𝑐 = ∅ → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))))
92 fveq2 5575 . . . . . . . 8 (𝑐 = 𝑘 → (𝑅𝑐) = (𝑅𝑘))
93 fveq2 5575 . . . . . . . 8 (𝑐 = 𝑘 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
9492, 93eqeq12d 2219 . . . . . . 7 (𝑐 = 𝑘 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
9594imbi2d 230 . . . . . 6 (𝑐 = 𝑘 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))))
96 fveq2 5575 . . . . . . . 8 (𝑐 = suc 𝑘 → (𝑅𝑐) = (𝑅‘suc 𝑘))
97 fveq2 5575 . . . . . . . 8 (𝑐 = suc 𝑘 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))
9896, 97eqeq12d 2219 . . . . . . 7 (𝑐 = suc 𝑘 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘)))
9998imbi2d 230 . . . . . 6 (𝑐 = suc 𝑘 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
100 fveq2 5575 . . . . . . . 8 (𝑐 = 𝑛 → (𝑅𝑐) = (𝑅𝑛))
101 fveq2 5575 . . . . . . . 8 (𝑐 = 𝑛 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))
102100, 101eqeq12d 2219 . . . . . . 7 (𝑐 = 𝑛 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛)))
103102imbi2d 230 . . . . . 6 (𝑐 = 𝑛 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))))
10441fveq1i 5576 . . . . . . . 8 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅)
105 frec0g 6482 . . . . . . . . 9 (⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
10683, 105syl 14 . . . . . . . 8 (𝜑 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
107104, 106eqtrid 2249 . . . . . . 7 (𝜑 → (𝑅‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
108 frec0g 6482 . . . . . . . 8 (⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
10983, 108syl 14 . . . . . . 7 (𝜑 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
110107, 109eqtr4d 2240 . . . . . 6 (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))
11142ad2antlr 489 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → 𝑅:ω⟶((ℤ𝑀) × 𝐶))
112 simpll 527 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → 𝑘 ∈ ω)
113111, 112ffvelcdmd 5715 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶))
114 xp1st 6250 . . . . . . . . . . 11 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶) → (1st ‘(𝑅𝑘)) ∈ (ℤ𝑀))
115113, 114syl 14 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (1st ‘(𝑅𝑘)) ∈ (ℤ𝑀))
116 xp2nd 6251 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶) → (2nd ‘(𝑅𝑘)) ∈ 𝐶)
117113, 116syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (2nd ‘(𝑅𝑘)) ∈ 𝐶)
118117elexd 2784 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (2nd ‘(𝑅𝑘)) ∈ V)
119 peano2uz 9703 . . . . . . . . . . . 12 ((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ𝑀))
120115, 119syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ𝑀))
12114ad2antlr 489 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
122 fveq2 5575 . . . . . . . . . . . . . . 15 (𝑎 = ((1st ‘(𝑅𝑘)) + 1) → (𝐹𝑎) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
123122eleq1d 2273 . . . . . . . . . . . . . 14 (𝑎 = ((1st ‘(𝑅𝑘)) + 1) → ((𝐹𝑎) ∈ 𝐷 ↔ (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝐷))
12429ad2antlr 489 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
125 eluzp1p1 9673 . . . . . . . . . . . . . . 15 ((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ‘(𝑀 + 1)))
126115, 125syl 14 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ‘(𝑀 + 1)))
127123, 124, 126rspcdva 2881 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝐷)
128 oveq12 5952 . . . . . . . . . . . . . . 15 ((𝑥 = (2nd ‘(𝑅𝑘)) ∧ 𝑦 = (𝐹‘((1st ‘(𝑅𝑘)) + 1))) → (𝑥 + 𝑦) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
129128eleq1d 2273 . . . . . . . . . . . . . 14 ((𝑥 = (2nd ‘(𝑅𝑘)) ∧ 𝑦 = (𝐹‘((1st ‘(𝑅𝑘)) + 1))) → ((𝑥 + 𝑦) ∈ 𝐶 ↔ ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶))
130129rspc2gv 2888 . . . . . . . . . . . . 13 (((2nd ‘(𝑅𝑘)) ∈ 𝐶 ∧ (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶))
131117, 127, 130syl2anc 411 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶))
132121, 131mpd 13 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶)
133120, 132opelxpd 4707 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶))
134 oveq1 5950 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑥 + 1) = ((1st ‘(𝑅𝑘)) + 1))
135 fvoveq1 5966 . . . . . . . . . . . . 13 (𝑥 = (1st ‘(𝑅𝑘)) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
136135oveq2d 5959 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
137134, 136opeq12d 3826 . . . . . . . . . . 11 (𝑥 = (1st ‘(𝑅𝑘)) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
138 oveq1 5950 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(𝑅𝑘)) → (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
139138opeq2d 3825 . . . . . . . . . . 11 (𝑦 = (2nd ‘(𝑅𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
140137, 139, 75ovmpog 6079 . . . . . . . . . 10 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ V ∧ ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
141115, 118, 133, 140syl3anc 1249 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
14280ad2antlr 489 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
14383ad2antlr 489 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶))
144 frecsuc 6492 . . . . . . . . . . 11 ((∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
145142, 143, 112, 144syl3anc 1249 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
146 simpr 110 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
147146fveq2d 5579 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
148 1st2nd2 6260 . . . . . . . . . . . . 13 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
149113, 148syl 14 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
150149fveq2d 5579 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
151 df-ov 5946 . . . . . . . . . . 11 ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
152150, 151eqtr4di 2255 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))))
153145, 147, 1523eqtr2d 2243 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))))
15445fveq2d 5579 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st𝑢), (2nd𝑢)⟩))
155 df-ov 5946 . . . . . . . . . . . . . . . . . . 19 ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st𝑢), (2nd𝑢)⟩)
156154, 155eqtr4di 2255 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)))
157 fvoveq1 5966 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (1st𝑢) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st𝑢) + 1)))
158157oveq2d 5959 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (1st𝑢) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st𝑢) + 1))))
159 oveq1 5950 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (2nd𝑢) → (𝑤 + (𝐹‘((1st𝑢) + 1))) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
160 eqid 2204 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
161158, 159, 160ovmpog 6079 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ 𝐶 ∧ ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
16250, 52, 67, 161syl3anc 1249 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
163162, 67eqeltrd 2281 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) ∈ 𝐶)
16455, 163opelxpd 4707 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩ ∈ ((ℤ𝑀) × 𝐶))
165 oveq1 5950 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (1st𝑢) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦))
16669, 165opeq12d 3826 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (1st𝑢) → ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
167 oveq2 5951 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (2nd𝑢) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)))
168167opeq2d 3825 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (2nd𝑢) → ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
169 eqid 2204 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
170166, 168, 169ovmpog 6079 . . . . . . . . . . . . . . . . . . 19 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ V ∧ ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
17150, 53, 164, 170syl3anc 1249 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
172156, 171eqtrd 2237 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
173172, 164eqeltrd 2281 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
174173ralrimiva 2578 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
175174ad2antlr 489 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
176 frecsuc 6492 . . . . . . . . . . . . . 14 ((∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
177175, 143, 112, 176syl3anc 1249 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
17841fveq1i 5576 . . . . . . . . . . . . 13 (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘)
17941fveq1i 5576 . . . . . . . . . . . . . 14 (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)
180179fveq2i 5578 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
181177, 178, 1803eqtr4g 2262 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)))
182149fveq2d 5579 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
183181, 182eqtrd 2237 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
184 df-ov 5946 . . . . . . . . . . 11 ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
185183, 184eqtr4di 2255 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))))
186 fvoveq1 5966 . . . . . . . . . . . . . . . 16 (𝑧 = (1st ‘(𝑅𝑘)) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
187186oveq2d 5959 . . . . . . . . . . . . . . 15 (𝑧 = (1st ‘(𝑅𝑘)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
188 oveq1 5950 . . . . . . . . . . . . . . 15 (𝑤 = (2nd ‘(𝑅𝑘)) → (𝑤 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
189187, 188, 160ovmpog 6079 . . . . . . . . . . . . . 14 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ 𝐶 ∧ ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
190115, 117, 132, 189syl3anc 1249 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
191190, 132eqeltrd 2281 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) ∈ 𝐶)
192120, 191opelxpd 4707 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝑀) × 𝐶))
193 oveq1 5950 . . . . . . . . . . . . 13 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦))
194134, 193opeq12d 3826 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
195 oveq2 5951 . . . . . . . . . . . . 13 (𝑦 = (2nd ‘(𝑅𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))))
196195opeq2d 3825 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(𝑅𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
197194, 196, 169ovmpog 6079 . . . . . . . . . . 11 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ V ∧ ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
198115, 118, 192, 197syl3anc 1249 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
199190opeq2d 3825 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
200185, 198, 1993eqtrd 2241 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
201141, 153, 2003eqtr4rd 2248 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))
202201exp31 364 . . . . . . 7 (𝑘 ∈ ω → (𝜑 → ((𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
203202a2d 26 . . . . . 6 (𝑘 ∈ ω → ((𝜑 → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
20491, 95, 99, 103, 110, 203finds 4647 . . . . 5 (𝑛 ∈ ω → (𝜑 → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛)))
205204impcom 125 . . . 4 ((𝜑𝑛 ∈ ω) → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))
20643, 87, 205eqfnfvd 5679 . . 3 (𝜑𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
207206rneqd 4906 . 2 (𝜑 → ran 𝑅 = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
2081, 207eqtr4id 2256 1 (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  wss 3165  c0 3459  cop 3635  suc csuc 4411  ωcom 4637   × cxp 4672  ran crn 4675   Fn wfn 5265  wf 5266  cfv 5270  (class class class)co 5943  cmpo 5945  1st c1st 6223  2nd c2nd 6224  freccfrec 6475  1c1 7925   + caddc 7927  cz 9371  cuz 9647  seqcseq 10590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591
This theorem is referenced by:  seqf2  10611  seq1cd  10612  seqp1cd  10613
  Copyright terms: Public domain W3C validator