Step | Hyp | Ref
| Expression |
1 | | df-seqfrec 10381 |
. 2
⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
2 | | seqvalcd.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | seqvalcd.f0 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) |
4 | | ssv 3164 |
. . . . . . 7
⊢ 𝐶 ⊆ V |
5 | 4 | a1i 9 |
. . . . . 6
⊢ (𝜑 → 𝐶 ⊆ V) |
6 | | eqidd 2166 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))) |
7 | | simprr 522 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑦) |
8 | | simprl 521 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑧 = 𝑥) |
9 | 8 | fvoveq1d 5864 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1))) |
10 | 7, 9 | oveq12d 5860 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
11 | | simprl 521 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
12 | | simprr 522 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
13 | | seqvalcd.pl |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
14 | 13 | ralrimivva 2548 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶) |
15 | | oveq1 5849 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑥 + 𝑦) = (𝑎 + 𝑦)) |
16 | 15 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑦) ∈ 𝐶)) |
17 | | oveq2 5850 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → (𝑎 + 𝑦) = (𝑎 + 𝑏)) |
18 | 17 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ((𝑎 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑏) ∈ 𝐶)) |
19 | 16, 18 | cbvral2v 2705 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶 ↔ ∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐷 (𝑎 + 𝑏) ∈ 𝐶) |
20 | 14, 19 | sylib 121 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐷 (𝑎 + 𝑏) ∈ 𝐶) |
21 | 20 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → ∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐷 (𝑎 + 𝑏) ∈ 𝐶) |
22 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑥 + 1) → (𝐹‘𝑎) = (𝐹‘(𝑥 + 1))) |
23 | 22 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 + 1) → ((𝐹‘𝑎) ∈ 𝐷 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝐷)) |
24 | | seqvalcd.fp1 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) |
25 | 24 | ralrimiva 2539 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑥) ∈ 𝐷) |
26 | | fveq2 5486 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) |
27 | 26 | eleq1d 2235 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → ((𝐹‘𝑥) ∈ 𝐷 ↔ (𝐹‘𝑎) ∈ 𝐷)) |
28 | 27 | cbvralv 2692 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(ℤ≥‘(𝑀 + 1))(𝐹‘𝑥) ∈ 𝐷 ↔ ∀𝑎 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑎) ∈ 𝐷) |
29 | 25, 28 | sylib 121 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑎) ∈ 𝐷) |
30 | 29 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → ∀𝑎 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑎) ∈ 𝐷) |
31 | | eluzp1p1 9491 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → (𝑥 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
32 | 11, 31 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
33 | 23, 30, 32 | rspcdva 2835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝐹‘(𝑥 + 1)) ∈ 𝐷) |
34 | | oveq12 5851 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑦 ∧ 𝑏 = (𝐹‘(𝑥 + 1))) → (𝑎 + 𝑏) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
35 | 34 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑦 ∧ 𝑏 = (𝐹‘(𝑥 + 1))) → ((𝑎 + 𝑏) ∈ 𝐶 ↔ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶)) |
36 | 35 | rspc2gv 2842 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐶 ∧ (𝐹‘(𝑥 + 1)) ∈ 𝐷) → (∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶)) |
37 | 12, 33, 36 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶)) |
38 | 21, 37 | mpd 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶) |
39 | 6, 10, 11, 12, 38 | ovmpod 5969 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
40 | 39, 38 | eqeltrd 2243 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) |
41 | | seqvalcd.r |
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) |
42 | 2, 3, 5, 40, 41 | frecuzrdgrclt 10350 |
. . . . 5
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝑀) × 𝐶)) |
43 | 42 | ffnd 5338 |
. . . 4
⊢ (𝜑 → 𝑅 Fn ω) |
44 | | 1st2nd2 6143 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝐶) → 𝑢 = 〈(1st ‘𝑢), (2nd ‘𝑢)〉) |
45 | 44 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → 𝑢 = 〈(1st ‘𝑢), (2nd ‘𝑢)〉) |
46 | 45 | fveq2d 5490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉)) |
47 | | df-ov 5845 |
. . . . . . . . . 10
⊢
((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉) |
48 | 46, 47 | eqtr4di 2217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢))) |
49 | | xp1st 6133 |
. . . . . . . . . . 11
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝐶) → (1st ‘𝑢) ∈
(ℤ≥‘𝑀)) |
50 | 49 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → (1st ‘𝑢) ∈
(ℤ≥‘𝑀)) |
51 | | xp2nd 6134 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝐶) → (2nd ‘𝑢) ∈ 𝐶) |
52 | 51 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → (2nd ‘𝑢) ∈ 𝐶) |
53 | 52 | elexd 2739 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → (2nd ‘𝑢) ∈ V) |
54 | | peano2uz 9521 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑢) ∈ (ℤ≥‘𝑀) → ((1st
‘𝑢) + 1) ∈
(ℤ≥‘𝑀)) |
55 | 50, 54 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢) + 1) ∈
(ℤ≥‘𝑀)) |
56 | 14 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶) |
57 | | fveq2 5486 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ((1st ‘𝑢) + 1) → (𝐹‘𝑥) = (𝐹‘((1st ‘𝑢) + 1))) |
58 | 57 | eleq1d 2235 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((1st ‘𝑢) + 1) → ((𝐹‘𝑥) ∈ 𝐷 ↔ (𝐹‘((1st ‘𝑢) + 1)) ∈ 𝐷)) |
59 | 25 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ∀𝑥 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑥) ∈ 𝐷) |
60 | | eluzp1p1 9491 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑢) ∈ (ℤ≥‘𝑀) → ((1st
‘𝑢) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
61 | 50, 60 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
62 | 58, 59, 61 | rspcdva 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → (𝐹‘((1st ‘𝑢) + 1)) ∈ 𝐷) |
63 | | oveq12 5851 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = (2nd ‘𝑢) ∧ 𝑦 = (𝐹‘((1st ‘𝑢) + 1))) → (𝑥 + 𝑦) = ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1)))) |
64 | 63 | eleq1d 2235 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (2nd ‘𝑢) ∧ 𝑦 = (𝐹‘((1st ‘𝑢) + 1))) → ((𝑥 + 𝑦) ∈ 𝐶 ↔ ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝐶)) |
65 | 64 | rspc2gv 2842 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑢) ∈ 𝐶 ∧ (𝐹‘((1st ‘𝑢) + 1)) ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝐶)) |
66 | 52, 62, 65 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝐶)) |
67 | 56, 66 | mpd 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝐶) |
68 | 55, 67 | opelxpd 4637 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) + 1)))〉
∈ ((ℤ≥‘𝑀) × 𝐶)) |
69 | | oveq1 5849 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑢) → (𝑥 + 1) = ((1st ‘𝑢) + 1)) |
70 | | fvoveq1 5865 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑢) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘𝑢) + 1))) |
71 | 70 | oveq2d 5858 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑢) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))) |
72 | 69, 71 | opeq12d 3766 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑢) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈((1st
‘𝑢) + 1), (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))〉) |
73 | | oveq1 5849 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑢) → (𝑦 + (𝐹‘((1st ‘𝑢) + 1))) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
74 | 73 | opeq2d 3765 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑢) → 〈((1st
‘𝑢) + 1), (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))〉 =
〈((1st ‘𝑢) + 1), ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1)))〉) |
75 | | eqid 2165 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) |
76 | 72, 74, 75 | ovmpog 5976 |
. . . . . . . . . 10
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ V ∧
〈((1st ‘𝑢) + 1), ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) +
1)))〉) |
77 | 50, 53, 68, 76 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) +
1)))〉) |
78 | 48, 77 | eqtrd 2198 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = 〈((1st ‘𝑢) + 1), ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))〉) |
79 | 78, 68 | eqeltrd 2243 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶)) |
80 | 79 | ralrimiva 2539 |
. . . . . 6
⊢ (𝜑 → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶)) |
81 | | uzid 9480 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
82 | 2, 81 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
83 | 82, 3 | opelxpd 4637 |
. . . . . 6
⊢ (𝜑 → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶)) |
84 | 80, 83 | jca 304 |
. . . . 5
⊢ (𝜑 → (∀𝑢 ∈
((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶))) |
85 | | frecfcl 6373 |
. . . . 5
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶)) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉):ω⟶((ℤ≥‘𝑀) × 𝐶)) |
86 | | ffn 5337 |
. . . . 5
⊢
(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉):ω⟶((ℤ≥‘𝑀) × 𝐶) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦
∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) Fn ω) |
87 | 84, 85, 86 | 3syl 17 |
. . . 4
⊢ (𝜑 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) Fn ω) |
88 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = ∅ → (𝑅‘𝑐) = (𝑅‘∅)) |
89 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = ∅ → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)) |
90 | 88, 89 | eqeq12d 2180 |
. . . . . . 7
⊢ (𝑐 = ∅ → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅))) |
91 | 90 | imbi2d 229 |
. . . . . 6
⊢ (𝑐 = ∅ → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)))) |
92 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = 𝑘 → (𝑅‘𝑐) = (𝑅‘𝑘)) |
93 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = 𝑘 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) |
94 | 92, 93 | eqeq12d 2180 |
. . . . . . 7
⊢ (𝑐 = 𝑘 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
95 | 94 | imbi2d 229 |
. . . . . 6
⊢ (𝑐 = 𝑘 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)))) |
96 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = suc 𝑘 → (𝑅‘𝑐) = (𝑅‘suc 𝑘)) |
97 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = suc 𝑘 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)) |
98 | 96, 97 | eqeq12d 2180 |
. . . . . . 7
⊢ (𝑐 = suc 𝑘 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘))) |
99 | 98 | imbi2d 229 |
. . . . . 6
⊢ (𝑐 = suc 𝑘 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) |
100 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = 𝑛 → (𝑅‘𝑐) = (𝑅‘𝑛)) |
101 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑐 = 𝑛 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)) |
102 | 100, 101 | eqeq12d 2180 |
. . . . . . 7
⊢ (𝑐 = 𝑛 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛))) |
103 | 102 | imbi2d 229 |
. . . . . 6
⊢ (𝑐 = 𝑛 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)))) |
104 | 41 | fveq1i 5487 |
. . . . . . . 8
⊢ (𝑅‘∅) = (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) |
105 | | frec0g 6365 |
. . . . . . . . 9
⊢
(〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
106 | 83, 105 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
107 | 104, 106 | syl5eq 2211 |
. . . . . . 7
⊢ (𝜑 → (𝑅‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
108 | | frec0g 6365 |
. . . . . . . 8
⊢
(〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
109 | 83, 108 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
110 | 107, 109 | eqtr4d 2201 |
. . . . . 6
⊢ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)) |
111 | 42 | ad2antlr 481 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 𝑅:ω⟶((ℤ≥‘𝑀) × 𝐶)) |
112 | | simpll 519 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 𝑘 ∈ ω) |
113 | 111, 112 | ffvelrnd 5621 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝐶)) |
114 | | xp1st 6133 |
. . . . . . . . . . 11
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝐶) → (1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀)) |
115 | 113, 114 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀)) |
116 | | xp2nd 6134 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝐶) → (2nd ‘(𝑅‘𝑘)) ∈ 𝐶) |
117 | 113, 116 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (2nd ‘(𝑅‘𝑘)) ∈ 𝐶) |
118 | 117 | elexd 2739 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (2nd ‘(𝑅‘𝑘)) ∈ V) |
119 | | peano2uz 9521 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) → ((1st
‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀)) |
120 | 115, 119 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀)) |
121 | 14 | ad2antlr 481 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶) |
122 | | fveq2 5486 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = ((1st
‘(𝑅‘𝑘)) + 1) → (𝐹‘𝑎) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) |
123 | 122 | eleq1d 2235 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ((1st
‘(𝑅‘𝑘)) + 1) → ((𝐹‘𝑎) ∈ 𝐷 ↔ (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)) ∈ 𝐷)) |
124 | 29 | ad2antlr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑎 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑎) ∈ 𝐷) |
125 | | eluzp1p1 9491 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) → ((1st
‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
126 | 115, 125 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
127 | 123, 124,
126 | rspcdva 2835 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)) ∈ 𝐷) |
128 | | oveq12 5851 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = (2nd ‘(𝑅‘𝑘)) ∧ 𝑦 = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) → (𝑥 + 𝑦) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
129 | 128 | eleq1d 2235 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (2nd ‘(𝑅‘𝑘)) ∧ 𝑦 = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) → ((𝑥 + 𝑦) ∈ 𝐶 ↔ ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝐶)) |
130 | 129 | rspc2gv 2842 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘(𝑅‘𝑘)) ∈ 𝐶 ∧ (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)) ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝐶)) |
131 | 117, 127,
130 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝐶)) |
132 | 121, 131 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝐶) |
133 | 120, 132 | opelxpd 4637 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝐶)) |
134 | | oveq1 5849 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑥 + 1) = ((1st ‘(𝑅‘𝑘)) + 1)) |
135 | | fvoveq1 5865 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) |
136 | 135 | oveq2d 5858 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
137 | 134, 136 | opeq12d 3766 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
138 | | oveq1 5849 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
139 | 138 | opeq2d 3765 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
140 | 137, 139,
75 | ovmpog 5976 |
. . . . . . . . . 10
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ V ∧
〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
141 | 115, 118,
133, 140 | syl3anc 1228 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
142 | 80 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶)) |
143 | 83 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶)) |
144 | | frecsuc 6375 |
. . . . . . . . . . 11
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
145 | 142, 143,
112, 144 | syl3anc 1228 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
146 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) |
147 | 146 | fveq2d 5490 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
148 | | 1st2nd2 6143 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝐶) → (𝑅‘𝑘) = 〈(1st ‘(𝑅‘𝑘)), (2nd ‘(𝑅‘𝑘))〉) |
149 | 113, 148 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) = 〈(1st ‘(𝑅‘𝑘)), (2nd ‘(𝑅‘𝑘))〉) |
150 | 149 | fveq2d 5490 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) |
151 | | df-ov 5845 |
. . . . . . . . . . 11
⊢
((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉) |
152 | 150, 151 | eqtr4di 2217 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘)))) |
153 | 145, 147,
152 | 3eqtr2d 2204 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘)))) |
154 | 45 | fveq2d 5490 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉)) |
155 | | df-ov 5845 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉) |
156 | 154, 155 | eqtr4di 2217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢))) |
157 | | fvoveq1 5865 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = (1st ‘𝑢) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘𝑢) + 1))) |
158 | 157 | oveq2d 5858 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (1st ‘𝑢) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘𝑢) + 1)))) |
159 | | oveq1 5849 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (2nd ‘𝑢) → (𝑤 + (𝐹‘((1st ‘𝑢) + 1))) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
160 | | eqid 2165 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) |
161 | 158, 159,
160 | ovmpog 5976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ 𝐶 ∧ ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) + 1))) ∈
𝐶) → ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
162 | 50, 52, 67, 161 | syl3anc 1228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
163 | 162, 67 | eqeltrd 2243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) ∈ 𝐶) |
164 | 55, 163 | opelxpd 4637 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝐶)) |
165 | | oveq1 5849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (1st ‘𝑢) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)) |
166 | 69, 165 | opeq12d 3766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (1st ‘𝑢) → 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
167 | | oveq2 5850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (2nd ‘𝑢) → ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))) |
168 | 167 | opeq2d 3765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (2nd ‘𝑢) → 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
169 | | eqid 2165 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
170 | 166, 168,
169 | ovmpog 5976 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ V ∧
〈((1st ‘𝑢) + 1), ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
171 | 50, 53, 164, 170 | syl3anc 1228 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
172 | 156, 171 | eqtrd 2198 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
173 | 172, 164 | eqeltrd 2243 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶)) |
174 | 173 | ralrimiva 2539 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶)) |
175 | 174 | ad2antlr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶)) |
176 | | frecsuc 6375 |
. . . . . . . . . . . . . 14
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝐶)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝐶) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝐶) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
177 | 175, 143,
112, 176 | syl3anc 1228 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
178 | 41 | fveq1i 5487 |
. . . . . . . . . . . . 13
⊢ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) |
179 | 41 | fveq1i 5487 |
. . . . . . . . . . . . . 14
⊢ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘) |
180 | 179 | fveq2i 5489 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) |
181 | 177, 178,
180 | 3eqtr4g 2224 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘))) |
182 | 149 | fveq2d 5490 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) |
183 | 181, 182 | eqtrd 2198 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) |
184 | | df-ov 5845 |
. . . . . . . . . . 11
⊢
((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉) |
185 | 183, 184 | eqtr4di 2217 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘)))) |
186 | | fvoveq1 5865 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (1st ‘(𝑅‘𝑘)) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) |
187 | 186 | oveq2d 5858 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (1st ‘(𝑅‘𝑘)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
188 | | oveq1 5849 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (2nd ‘(𝑅‘𝑘)) → (𝑤 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
189 | 187, 188,
160 | ovmpog 5976 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ 𝐶 ∧ ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝐶) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
190 | 115, 117,
132, 189 | syl3anc 1228 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
191 | 190, 132 | eqeltrd 2243 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) ∈ 𝐶) |
192 | 120, 191 | opelxpd 4637 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝐶)) |
193 | | oveq1 5849 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)) |
194 | 134, 193 | opeq12d 3766 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
195 | | oveq2 5850 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))) |
196 | 195 | opeq2d 3765 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) |
197 | 194, 196,
169 | ovmpog 5976 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ V ∧
〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝐶)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) |
198 | 115, 118,
192, 197 | syl3anc 1228 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) |
199 | 190 | opeq2d 3765 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
200 | 185, 198,
199 | 3eqtrd 2202 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
201 | 141, 153,
200 | 3eqtr4rd 2209 |
. . . . . . . 8
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)) |
202 | 201 | exp31 362 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (𝜑 → ((𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) |
203 | 202 | a2d 26 |
. . . . . 6
⊢ (𝑘 ∈ ω → ((𝜑 → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) |
204 | 91, 95, 99, 103, 110, 203 | finds 4577 |
. . . . 5
⊢ (𝑛 ∈ ω → (𝜑 → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛))) |
205 | 204 | impcom 124 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)) |
206 | 43, 87, 205 | eqfnfvd 5586 |
. . 3
⊢ (𝜑 → 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
207 | 206 | rneqd 4833 |
. 2
⊢ (𝜑 → ran 𝑅 = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
208 | 1, 207 | eqtr4id 2218 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) |