ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqvalcd GIF version

Theorem seqvalcd 10394
Description: Value of the sequence builder function. Similar to seq3val 10393 but the classes 𝐷 (type of each term) and 𝐶 (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
seqvalcd.m (𝜑𝑀 ∈ ℤ)
seqvalcd.r 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
seqvalcd.f0 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqvalcd.pl ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqvalcd.fp1 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqvalcd (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
Distinct variable groups:   𝑥, + ,𝑦,𝑤,𝑧   𝑥,𝐶,𝑦,𝑤,𝑧   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦,𝑤,𝑧   𝑥,𝑀,𝑦,𝑤,𝑧   𝑥,𝑅,𝑦,𝑤,𝑧   𝜑,𝑥,𝑦,𝑤,𝑧
Allowed substitution hints:   𝐷(𝑧,𝑤)

Proof of Theorem seqvalcd
Dummy variables 𝑎 𝑏 𝑐 𝑘 𝑛 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10381 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 seqvalcd.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 seqvalcd.f0 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ 𝐶)
4 ssv 3164 . . . . . . 7 𝐶 ⊆ V
54a1i 9 . . . . . 6 (𝜑𝐶 ⊆ V)
6 eqidd 2166 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))))
7 simprr 522 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑤 = 𝑦)
8 simprl 521 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑧 = 𝑥)
98fvoveq1d 5864 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
107, 9oveq12d 5860 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
11 simprl 521 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑥 ∈ (ℤ𝑀))
12 simprr 522 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → 𝑦𝐶)
13 seqvalcd.pl . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
1413ralrimivva 2548 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
15 oveq1 5849 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥 + 𝑦) = (𝑎 + 𝑦))
1615eleq1d 2235 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑥 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑦) ∈ 𝐶))
17 oveq2 5850 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (𝑎 + 𝑦) = (𝑎 + 𝑏))
1817eleq1d 2235 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ((𝑎 + 𝑦) ∈ 𝐶 ↔ (𝑎 + 𝑏) ∈ 𝐶))
1916, 18cbvral2v 2705 . . . . . . . . . . 11 (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 ↔ ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
2014, 19sylib 121 . . . . . . . . . 10 (𝜑 → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
2120adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶)
22 fveq2 5486 . . . . . . . . . . . 12 (𝑎 = (𝑥 + 1) → (𝐹𝑎) = (𝐹‘(𝑥 + 1)))
2322eleq1d 2235 . . . . . . . . . . 11 (𝑎 = (𝑥 + 1) → ((𝐹𝑎) ∈ 𝐷 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝐷))
24 seqvalcd.fp1 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
2524ralrimiva 2539 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷)
26 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
2726eleq1d 2235 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹𝑎) ∈ 𝐷))
2827cbvralv 2692 . . . . . . . . . . . . 13 (∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷 ↔ ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
2925, 28sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
3029adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
31 eluzp1p1 9491 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
3211, 31syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥 + 1) ∈ (ℤ‘(𝑀 + 1)))
3323, 30, 32rspcdva 2835 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝐹‘(𝑥 + 1)) ∈ 𝐷)
34 oveq12 5851 . . . . . . . . . . . 12 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → (𝑎 + 𝑏) = (𝑦 + (𝐹‘(𝑥 + 1))))
3534eleq1d 2235 . . . . . . . . . . 11 ((𝑎 = 𝑦𝑏 = (𝐹‘(𝑥 + 1))) → ((𝑎 + 𝑏) ∈ 𝐶 ↔ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
3635rspc2gv 2842 . . . . . . . . . 10 ((𝑦𝐶 ∧ (𝐹‘(𝑥 + 1)) ∈ 𝐷) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
3712, 33, 36syl2anc 409 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (∀𝑎𝐶𝑏𝐷 (𝑎 + 𝑏) ∈ 𝐶 → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶))
3821, 37mpd 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝐶)
396, 10, 11, 12, 38ovmpod 5969 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
4039, 38eqeltrd 2243 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
41 seqvalcd.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
422, 3, 5, 40, 41frecuzrdgrclt 10350 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝑀) × 𝐶))
4342ffnd 5338 . . . 4 (𝜑𝑅 Fn ω)
44 1st2nd2 6143 . . . . . . . . . . . 12 (𝑢 ∈ ((ℤ𝑀) × 𝐶) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
4544adantl 275 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
4645fveq2d 5490 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st𝑢), (2nd𝑢)⟩))
47 df-ov 5845 . . . . . . . . . 10 ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st𝑢), (2nd𝑢)⟩)
4846, 47eqtr4di 2217 . . . . . . . . 9 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)))
49 xp1st 6133 . . . . . . . . . . 11 (𝑢 ∈ ((ℤ𝑀) × 𝐶) → (1st𝑢) ∈ (ℤ𝑀))
5049adantl 275 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (1st𝑢) ∈ (ℤ𝑀))
51 xp2nd 6134 . . . . . . . . . . . 12 (𝑢 ∈ ((ℤ𝑀) × 𝐶) → (2nd𝑢) ∈ 𝐶)
5251adantl 275 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (2nd𝑢) ∈ 𝐶)
5352elexd 2739 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (2nd𝑢) ∈ V)
54 peano2uz 9521 . . . . . . . . . . . 12 ((1st𝑢) ∈ (ℤ𝑀) → ((1st𝑢) + 1) ∈ (ℤ𝑀))
5550, 54syl 14 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢) + 1) ∈ (ℤ𝑀))
5614adantr 274 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
57 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑥 = ((1st𝑢) + 1) → (𝐹𝑥) = (𝐹‘((1st𝑢) + 1)))
5857eleq1d 2235 . . . . . . . . . . . . . 14 (𝑥 = ((1st𝑢) + 1) → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹‘((1st𝑢) + 1)) ∈ 𝐷))
5925adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷)
60 eluzp1p1 9491 . . . . . . . . . . . . . . 15 ((1st𝑢) ∈ (ℤ𝑀) → ((1st𝑢) + 1) ∈ (ℤ‘(𝑀 + 1)))
6150, 60syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢) + 1) ∈ (ℤ‘(𝑀 + 1)))
6258, 59, 61rspcdva 2835 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (𝐹‘((1st𝑢) + 1)) ∈ 𝐷)
63 oveq12 5851 . . . . . . . . . . . . . . 15 ((𝑥 = (2nd𝑢) ∧ 𝑦 = (𝐹‘((1st𝑢) + 1))) → (𝑥 + 𝑦) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
6463eleq1d 2235 . . . . . . . . . . . . . 14 ((𝑥 = (2nd𝑢) ∧ 𝑦 = (𝐹‘((1st𝑢) + 1))) → ((𝑥 + 𝑦) ∈ 𝐶 ↔ ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶))
6564rspc2gv 2842 . . . . . . . . . . . . 13 (((2nd𝑢) ∈ 𝐶 ∧ (𝐹‘((1st𝑢) + 1)) ∈ 𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶))
6652, 62, 65syl2anc 409 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶))
6756, 66mpd 13 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶)
6855, 67opelxpd 4637 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶))
69 oveq1 5849 . . . . . . . . . . . 12 (𝑥 = (1st𝑢) → (𝑥 + 1) = ((1st𝑢) + 1))
70 fvoveq1 5865 . . . . . . . . . . . . 13 (𝑥 = (1st𝑢) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st𝑢) + 1)))
7170oveq2d 5858 . . . . . . . . . . . 12 (𝑥 = (1st𝑢) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st𝑢) + 1))))
7269, 71opeq12d 3766 . . . . . . . . . . 11 (𝑥 = (1st𝑢) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨((1st𝑢) + 1), (𝑦 + (𝐹‘((1st𝑢) + 1)))⟩)
73 oveq1 5849 . . . . . . . . . . . 12 (𝑦 = (2nd𝑢) → (𝑦 + (𝐹‘((1st𝑢) + 1))) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
7473opeq2d 3765 . . . . . . . . . . 11 (𝑦 = (2nd𝑢) → ⟨((1st𝑢) + 1), (𝑦 + (𝐹‘((1st𝑢) + 1)))⟩ = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
75 eqid 2165 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)
7672, 74, 75ovmpog 5976 . . . . . . . . . 10 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ V ∧ ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
7750, 53, 68, 76syl3anc 1228 . . . . . . . . 9 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
7848, 77eqtrd 2198 . . . . . . . 8 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
7978, 68eqeltrd 2243 . . . . . . 7 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
8079ralrimiva 2539 . . . . . 6 (𝜑 → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
81 uzid 9480 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
822, 81syl 14 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
8382, 3opelxpd 4637 . . . . . 6 (𝜑 → ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶))
8480, 83jca 304 . . . . 5 (𝜑 → (∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶)))
85 frecfcl 6373 . . . . 5 ((∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶)) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩):ω⟶((ℤ𝑀) × 𝐶))
86 ffn 5337 . . . . 5 (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩):ω⟶((ℤ𝑀) × 𝐶) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) Fn ω)
8784, 85, 863syl 17 . . . 4 (𝜑 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) Fn ω)
88 fveq2 5486 . . . . . . . 8 (𝑐 = ∅ → (𝑅𝑐) = (𝑅‘∅))
89 fveq2 5486 . . . . . . . 8 (𝑐 = ∅ → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))
9088, 89eqeq12d 2180 . . . . . . 7 (𝑐 = ∅ → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅)))
9190imbi2d 229 . . . . . 6 (𝑐 = ∅ → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))))
92 fveq2 5486 . . . . . . . 8 (𝑐 = 𝑘 → (𝑅𝑐) = (𝑅𝑘))
93 fveq2 5486 . . . . . . . 8 (𝑐 = 𝑘 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
9492, 93eqeq12d 2180 . . . . . . 7 (𝑐 = 𝑘 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
9594imbi2d 229 . . . . . 6 (𝑐 = 𝑘 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))))
96 fveq2 5486 . . . . . . . 8 (𝑐 = suc 𝑘 → (𝑅𝑐) = (𝑅‘suc 𝑘))
97 fveq2 5486 . . . . . . . 8 (𝑐 = suc 𝑘 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))
9896, 97eqeq12d 2180 . . . . . . 7 (𝑐 = suc 𝑘 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘)))
9998imbi2d 229 . . . . . 6 (𝑐 = suc 𝑘 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
100 fveq2 5486 . . . . . . . 8 (𝑐 = 𝑛 → (𝑅𝑐) = (𝑅𝑛))
101 fveq2 5486 . . . . . . . 8 (𝑐 = 𝑛 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))
102100, 101eqeq12d 2180 . . . . . . 7 (𝑐 = 𝑛 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛)))
103102imbi2d 229 . . . . . 6 (𝑐 = 𝑛 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))))
10441fveq1i 5487 . . . . . . . 8 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅)
105 frec0g 6365 . . . . . . . . 9 (⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
10683, 105syl 14 . . . . . . . 8 (𝜑 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
107104, 106syl5eq 2211 . . . . . . 7 (𝜑 → (𝑅‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
108 frec0g 6365 . . . . . . . 8 (⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
10983, 108syl 14 . . . . . . 7 (𝜑 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
110107, 109eqtr4d 2201 . . . . . 6 (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))
11142ad2antlr 481 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → 𝑅:ω⟶((ℤ𝑀) × 𝐶))
112 simpll 519 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → 𝑘 ∈ ω)
113111, 112ffvelrnd 5621 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶))
114 xp1st 6133 . . . . . . . . . . 11 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶) → (1st ‘(𝑅𝑘)) ∈ (ℤ𝑀))
115113, 114syl 14 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (1st ‘(𝑅𝑘)) ∈ (ℤ𝑀))
116 xp2nd 6134 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶) → (2nd ‘(𝑅𝑘)) ∈ 𝐶)
117113, 116syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (2nd ‘(𝑅𝑘)) ∈ 𝐶)
118117elexd 2739 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (2nd ‘(𝑅𝑘)) ∈ V)
119 peano2uz 9521 . . . . . . . . . . . 12 ((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ𝑀))
120115, 119syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ𝑀))
12114ad2antlr 481 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶)
122 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑎 = ((1st ‘(𝑅𝑘)) + 1) → (𝐹𝑎) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
123122eleq1d 2235 . . . . . . . . . . . . . 14 (𝑎 = ((1st ‘(𝑅𝑘)) + 1) → ((𝐹𝑎) ∈ 𝐷 ↔ (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝐷))
12429ad2antlr 481 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑎 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑎) ∈ 𝐷)
125 eluzp1p1 9491 . . . . . . . . . . . . . . 15 ((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ‘(𝑀 + 1)))
126115, 125syl 14 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ‘(𝑀 + 1)))
127123, 124, 126rspcdva 2835 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝐷)
128 oveq12 5851 . . . . . . . . . . . . . . 15 ((𝑥 = (2nd ‘(𝑅𝑘)) ∧ 𝑦 = (𝐹‘((1st ‘(𝑅𝑘)) + 1))) → (𝑥 + 𝑦) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
129128eleq1d 2235 . . . . . . . . . . . . . 14 ((𝑥 = (2nd ‘(𝑅𝑘)) ∧ 𝑦 = (𝐹‘((1st ‘(𝑅𝑘)) + 1))) → ((𝑥 + 𝑦) ∈ 𝐶 ↔ ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶))
130129rspc2gv 2842 . . . . . . . . . . . . 13 (((2nd ‘(𝑅𝑘)) ∈ 𝐶 ∧ (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶))
131117, 127, 130syl2anc 409 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (∀𝑥𝐶𝑦𝐷 (𝑥 + 𝑦) ∈ 𝐶 → ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶))
132121, 131mpd 13 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶)
133120, 132opelxpd 4637 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶))
134 oveq1 5849 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑥 + 1) = ((1st ‘(𝑅𝑘)) + 1))
135 fvoveq1 5865 . . . . . . . . . . . . 13 (𝑥 = (1st ‘(𝑅𝑘)) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
136135oveq2d 5858 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
137134, 136opeq12d 3766 . . . . . . . . . . 11 (𝑥 = (1st ‘(𝑅𝑘)) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
138 oveq1 5849 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(𝑅𝑘)) → (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
139138opeq2d 3765 . . . . . . . . . . 11 (𝑦 = (2nd ‘(𝑅𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
140137, 139, 75ovmpog 5976 . . . . . . . . . 10 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ V ∧ ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
141115, 118, 133, 140syl3anc 1228 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
14280ad2antlr 481 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
14383ad2antlr 481 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶))
144 frecsuc 6375 . . . . . . . . . . 11 ((∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
145142, 143, 112, 144syl3anc 1228 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
146 simpr 109 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
147146fveq2d 5490 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
148 1st2nd2 6143 . . . . . . . . . . . . 13 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝐶) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
149113, 148syl 14 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
150149fveq2d 5490 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
151 df-ov 5845 . . . . . . . . . . 11 ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
152150, 151eqtr4di 2217 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))))
153145, 147, 1523eqtr2d 2204 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))))
15445fveq2d 5490 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st𝑢), (2nd𝑢)⟩))
155 df-ov 5845 . . . . . . . . . . . . . . . . . . 19 ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st𝑢), (2nd𝑢)⟩)
156154, 155eqtr4di 2217 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)))
157 fvoveq1 5865 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (1st𝑢) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st𝑢) + 1)))
158157oveq2d 5858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (1st𝑢) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st𝑢) + 1))))
159 oveq1 5849 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (2nd𝑢) → (𝑤 + (𝐹‘((1st𝑢) + 1))) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
160 eqid 2165 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
161158, 159, 160ovmpog 5976 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ 𝐶 ∧ ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝐶) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
16250, 52, 67, 161syl3anc 1228 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
163162, 67eqeltrd 2243 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) ∈ 𝐶)
16455, 163opelxpd 4637 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩ ∈ ((ℤ𝑀) × 𝐶))
165 oveq1 5849 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (1st𝑢) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦))
16669, 165opeq12d 3766 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (1st𝑢) → ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
167 oveq2 5850 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (2nd𝑢) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)))
168167opeq2d 3765 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (2nd𝑢) → ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
169 eqid 2165 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
170166, 168, 169ovmpog 5976 . . . . . . . . . . . . . . . . . . 19 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ V ∧ ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
17150, 53, 164, 170syl3anc 1228 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
172156, 171eqtrd 2198 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
173172, 164eqeltrd 2243 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝐶)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
174173ralrimiva 2539 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
175174ad2antlr 481 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶))
176 frecsuc 6375 . . . . . . . . . . . . . 14 ((∀𝑢 ∈ ((ℤ𝑀) × 𝐶)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝐶) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝐶) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
177175, 143, 112, 176syl3anc 1228 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
17841fveq1i 5487 . . . . . . . . . . . . 13 (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘)
17941fveq1i 5487 . . . . . . . . . . . . . 14 (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)
180179fveq2i 5489 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
181177, 178, 1803eqtr4g 2224 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)))
182149fveq2d 5490 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
183181, 182eqtrd 2198 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
184 df-ov 5845 . . . . . . . . . . 11 ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
185183, 184eqtr4di 2217 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))))
186 fvoveq1 5865 . . . . . . . . . . . . . . . 16 (𝑧 = (1st ‘(𝑅𝑘)) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
187186oveq2d 5858 . . . . . . . . . . . . . . 15 (𝑧 = (1st ‘(𝑅𝑘)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
188 oveq1 5849 . . . . . . . . . . . . . . 15 (𝑤 = (2nd ‘(𝑅𝑘)) → (𝑤 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
189187, 188, 160ovmpog 5976 . . . . . . . . . . . . . 14 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ 𝐶 ∧ ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝐶) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
190115, 117, 132, 189syl3anc 1228 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
191190, 132eqeltrd 2243 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) ∈ 𝐶)
192120, 191opelxpd 4637 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝑀) × 𝐶))
193 oveq1 5849 . . . . . . . . . . . . 13 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦))
194134, 193opeq12d 3766 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
195 oveq2 5850 . . . . . . . . . . . . 13 (𝑦 = (2nd ‘(𝑅𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))))
196195opeq2d 3765 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(𝑅𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
197194, 196, 169ovmpog 5976 . . . . . . . . . . 11 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ V ∧ ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝑀) × 𝐶)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
198115, 118, 192, 197syl3anc 1228 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
199190opeq2d 3765 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
200185, 198, 1993eqtrd 2202 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
201141, 153, 2003eqtr4rd 2209 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))
202201exp31 362 . . . . . . 7 (𝑘 ∈ ω → (𝜑 → ((𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
203202a2d 26 . . . . . 6 (𝑘 ∈ ω → ((𝜑 → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
20491, 95, 99, 103, 110, 203finds 4577 . . . . 5 (𝑛 ∈ ω → (𝜑 → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛)))
205204impcom 124 . . . 4 ((𝜑𝑛 ∈ ω) → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))
20643, 87, 205eqfnfvd 5586 . . 3 (𝜑𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
207206rneqd 4833 . 2 (𝜑 → ran 𝑅 = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
2081, 207eqtr4id 2218 1 (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  wss 3116  c0 3409  cop 3579  suc csuc 4343  ωcom 4567   × cxp 4602  ran crn 4605   Fn wfn 5183  wf 5184  cfv 5188  (class class class)co 5842  cmpo 5844  1st c1st 6106  2nd c2nd 6107  freccfrec 6358  1c1 7754   + caddc 7756  cz 9191  cuz 9466  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  seqf2  10399  seq1cd  10400  seqp1cd  10401
  Copyright terms: Public domain W3C validator