ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcex GIF version

Theorem unsnfidcex 6710
Description: The 𝐵𝑉 condition in unsnfi 6709. This is intended to show that unsnfi 6709 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcex ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)

Proof of Theorem unsnfidcex
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6558 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 967 . . 3 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6558 . . . . . . 7 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
54biimpi 119 . . . . . 6 ((𝐴 ∪ {𝐵}) ∈ Fin → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
653ad2ant3 969 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
76adantr 271 . . . 4 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
8 simprr 500 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
98ad3antrrr 477 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴𝑛)
10 simplr 498 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝑚 = 𝑛)
119, 10breqtrrd 3893 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴𝑚)
12 simprr 500 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
1312ad2antrr 473 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
1413ensymd 6580 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝑚 ≈ (𝐴 ∪ {𝐵}))
15 entr 6581 . . . . . . . 8 ((𝐴𝑚𝑚 ≈ (𝐴 ∪ {𝐵})) → 𝐴 ≈ (𝐴 ∪ {𝐵}))
1611, 14, 15syl2anc 404 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴 ≈ (𝐴 ∪ {𝐵}))
17 simp1 946 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → 𝐴 ∈ Fin)
1817ad4antr 479 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴 ∈ Fin)
19 simpr 109 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
20 simp2 947 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ¬ 𝐵𝐴)
2120ad4antr 479 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → ¬ 𝐵𝐴)
2219, 21eldifd 3023 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐵 ∈ (V ∖ 𝐴))
23 php5fin 6678 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2418, 22, 23syl2anc 404 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2516, 24pm2.65da 625 . . . . . 6 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → ¬ 𝐵 ∈ V)
2625orcd 690 . . . . 5 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
278ad3antrrr 477 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝐴𝑛)
2827ensymd 6580 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛𝐴)
29 snprc 3527 . . . . . . . . . . . . . . 15 𝐵 ∈ V ↔ {𝐵} = ∅)
3029biimpi 119 . . . . . . . . . . . . . 14 𝐵 ∈ V → {𝐵} = ∅)
3130uneq2d 3169 . . . . . . . . . . . . 13 𝐵 ∈ V → (𝐴 ∪ {𝐵}) = (𝐴 ∪ ∅))
32 un0 3335 . . . . . . . . . . . . 13 (𝐴 ∪ ∅) = 𝐴
3331, 32syl6eq 2143 . . . . . . . . . . . 12 𝐵 ∈ V → (𝐴 ∪ {𝐵}) = 𝐴)
3433adantl 272 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → (𝐴 ∪ {𝐵}) = 𝐴)
3512ad2antrr 473 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
3634, 35eqbrtrrd 3889 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝐴𝑚)
37 entr 6581 . . . . . . . . . 10 ((𝑛𝐴𝐴𝑚) → 𝑛𝑚)
3828, 36, 37syl2anc 404 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛𝑚)
39 simplrl 503 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑛 ∈ ω)
4039ad2antrr 473 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛 ∈ ω)
41 simprl 499 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑚 ∈ ω)
4241ad2antrr 473 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑚 ∈ ω)
43 nneneq 6653 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛 = 𝑚))
4440, 42, 43syl2anc 404 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → (𝑛𝑚𝑛 = 𝑚))
4538, 44mpbid 146 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛 = 𝑚)
4645eqcomd 2100 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑚 = 𝑛)
47 simplr 498 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → ¬ 𝑚 = 𝑛)
4846, 47pm2.65da 625 . . . . . 6 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → ¬ ¬ 𝐵 ∈ V)
4948olcd 691 . . . . 5 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
50 nndceq 6300 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → DECID 𝑚 = 𝑛)
5141, 39, 50syl2anc 404 . . . . . 6 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → DECID 𝑚 = 𝑛)
52 exmiddc 785 . . . . . 6 (DECID 𝑚 = 𝑛 → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5351, 52syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5426, 49, 53mpjaodan 750 . . . 4 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
557, 54rexlimddv 2507 . . 3 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
563, 55rexlimddv 2507 . 2 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
57 df-dc 784 . 2 (DECID ¬ 𝐵 ∈ V ↔ (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
5856, 57sylibr 133 1 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 667  DECID wdc 783  w3a 927   = wceq 1296  wcel 1445  wrex 2371  Vcvv 2633  cdif 3010  cun 3011  c0 3302  {csn 3466   class class class wbr 3867  ωcom 4433  cen 6535  Fincfn 6537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1o 6219  df-er 6332  df-en 6538  df-fin 6540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator