| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nnti | GIF version | ||
| Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.) |
| Ref | Expression |
|---|---|
| nnti.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
| Ref | Expression |
|---|---|
| nnti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑢 ∈ 𝐴) | |
| 2 | nnti.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ω) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝐴 ∈ ω) |
| 4 | elnn 4697 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑢 ∈ ω) | |
| 5 | 1, 3, 4 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑢 ∈ ω) |
| 6 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑣 ∈ 𝐴) | |
| 7 | elnn 4697 | . . . 4 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑣 ∈ ω) | |
| 8 | 6, 3, 7 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑣 ∈ ω) |
| 9 | nntri3 6641 | . . 3 ⊢ ((𝑢 ∈ ω ∧ 𝑣 ∈ ω) → (𝑢 = 𝑣 ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢))) | |
| 10 | 5, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢))) |
| 11 | epel 4382 | . . . 4 ⊢ (𝑢 E 𝑣 ↔ 𝑢 ∈ 𝑣) | |
| 12 | 11 | notbii 672 | . . 3 ⊢ (¬ 𝑢 E 𝑣 ↔ ¬ 𝑢 ∈ 𝑣) |
| 13 | epel 4382 | . . . 4 ⊢ (𝑣 E 𝑢 ↔ 𝑣 ∈ 𝑢) | |
| 14 | 13 | notbii 672 | . . 3 ⊢ (¬ 𝑣 E 𝑢 ↔ ¬ 𝑣 ∈ 𝑢) |
| 15 | 12, 14 | anbi12i 460 | . 2 ⊢ ((¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢) ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢)) |
| 16 | 10, 15 | bitr4di 198 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4082 E cep 4377 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-eprel 4379 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |