| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nnti | GIF version | ||
| Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.) |
| Ref | Expression |
|---|---|
| nnti.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
| Ref | Expression |
|---|---|
| nnti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑢 ∈ 𝐴) | |
| 2 | nnti.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ω) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝐴 ∈ ω) |
| 4 | elnn 4643 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑢 ∈ ω) | |
| 5 | 1, 3, 4 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑢 ∈ ω) |
| 6 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑣 ∈ 𝐴) | |
| 7 | elnn 4643 | . . . 4 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑣 ∈ ω) | |
| 8 | 6, 3, 7 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑣 ∈ ω) |
| 9 | nntri3 6564 | . . 3 ⊢ ((𝑢 ∈ ω ∧ 𝑣 ∈ ω) → (𝑢 = 𝑣 ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢))) | |
| 10 | 5, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢))) |
| 11 | epel 4328 | . . . 4 ⊢ (𝑢 E 𝑣 ↔ 𝑢 ∈ 𝑣) | |
| 12 | 11 | notbii 669 | . . 3 ⊢ (¬ 𝑢 E 𝑣 ↔ ¬ 𝑢 ∈ 𝑣) |
| 13 | epel 4328 | . . . 4 ⊢ (𝑣 E 𝑢 ↔ 𝑣 ∈ 𝑢) | |
| 14 | 13 | notbii 669 | . . 3 ⊢ (¬ 𝑣 E 𝑢 ↔ ¬ 𝑣 ∈ 𝑢) |
| 15 | 12, 14 | anbi12i 460 | . 2 ⊢ ((¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢) ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢)) |
| 16 | 10, 15 | bitr4di 198 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 E cep 4323 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-tr 4133 df-eprel 4325 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |