![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nnti | GIF version |
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.) |
Ref | Expression |
---|---|
nnti.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
nnti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 498 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑢 ∈ 𝐴) | |
2 | nnti.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ω) | |
3 | 2 | adantr 270 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝐴 ∈ ω) |
4 | elnn 4420 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑢 ∈ ω) | |
5 | 1, 3, 4 | syl2anc 403 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑢 ∈ ω) |
6 | simprr 499 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑣 ∈ 𝐴) | |
7 | elnn 4420 | . . . 4 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑣 ∈ ω) | |
8 | 6, 3, 7 | syl2anc 403 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → 𝑣 ∈ ω) |
9 | nntri3 6258 | . . 3 ⊢ ((𝑢 ∈ ω ∧ 𝑣 ∈ ω) → (𝑢 = 𝑣 ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢))) | |
10 | 5, 8, 9 | syl2anc 403 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢))) |
11 | epel 4119 | . . . 4 ⊢ (𝑢 E 𝑣 ↔ 𝑢 ∈ 𝑣) | |
12 | 11 | notbii 629 | . . 3 ⊢ (¬ 𝑢 E 𝑣 ↔ ¬ 𝑢 ∈ 𝑣) |
13 | epel 4119 | . . . 4 ⊢ (𝑣 E 𝑢 ↔ 𝑣 ∈ 𝑢) | |
14 | 13 | notbii 629 | . . 3 ⊢ (¬ 𝑣 E 𝑢 ↔ ¬ 𝑣 ∈ 𝑢) |
15 | 12, 14 | anbi12i 448 | . 2 ⊢ ((¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢) ↔ (¬ 𝑢 ∈ 𝑣 ∧ ¬ 𝑣 ∈ 𝑢)) |
16 | 10, 15 | syl6bbr 196 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1438 class class class wbr 3845 E cep 4114 ωcom 4405 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-tr 3937 df-eprel 4116 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |