Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnti GIF version

Theorem nnti 14626
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
Hypothesis
Ref Expression
nnti.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
nnti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))

Proof of Theorem nnti
StepHypRef Expression
1 simprl 529 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑢𝐴)
2 nnti.a . . . . 5 (𝜑𝐴 ∈ ω)
32adantr 276 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝐴 ∈ ω)
4 elnn 4605 . . . 4 ((𝑢𝐴𝐴 ∈ ω) → 𝑢 ∈ ω)
51, 3, 4syl2anc 411 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑢 ∈ ω)
6 simprr 531 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑣𝐴)
7 elnn 4605 . . . 4 ((𝑣𝐴𝐴 ∈ ω) → 𝑣 ∈ ω)
86, 3, 7syl2anc 411 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑣 ∈ ω)
9 nntri3 6497 . . 3 ((𝑢 ∈ ω ∧ 𝑣 ∈ ω) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢)))
105, 8, 9syl2anc 411 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢)))
11 epel 4292 . . . 4 (𝑢 E 𝑣𝑢𝑣)
1211notbii 668 . . 3 𝑢 E 𝑣 ↔ ¬ 𝑢𝑣)
13 epel 4292 . . . 4 (𝑣 E 𝑢𝑣𝑢)
1413notbii 668 . . 3 𝑣 E 𝑢 ↔ ¬ 𝑣𝑢)
1512, 14anbi12i 460 . 2 ((¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢) ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢))
1610, 15bitr4di 198 1 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2148   class class class wbr 4003   E cep 4287  ωcom 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-tr 4102  df-eprel 4289  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator