Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnti GIF version

Theorem nnti 15490
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
Hypothesis
Ref Expression
nnti.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
nnti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))

Proof of Theorem nnti
StepHypRef Expression
1 simprl 529 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑢𝐴)
2 nnti.a . . . . 5 (𝜑𝐴 ∈ ω)
32adantr 276 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝐴 ∈ ω)
4 elnn 4638 . . . 4 ((𝑢𝐴𝐴 ∈ ω) → 𝑢 ∈ ω)
51, 3, 4syl2anc 411 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑢 ∈ ω)
6 simprr 531 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑣𝐴)
7 elnn 4638 . . . 4 ((𝑣𝐴𝐴 ∈ ω) → 𝑣 ∈ ω)
86, 3, 7syl2anc 411 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑣 ∈ ω)
9 nntri3 6550 . . 3 ((𝑢 ∈ ω ∧ 𝑣 ∈ ω) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢)))
105, 8, 9syl2anc 411 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢)))
11 epel 4323 . . . 4 (𝑢 E 𝑣𝑢𝑣)
1211notbii 669 . . 3 𝑢 E 𝑣 ↔ ¬ 𝑢𝑣)
13 epel 4323 . . . 4 (𝑣 E 𝑢𝑣𝑢)
1413notbii 669 . . 3 𝑣 E 𝑢 ↔ ¬ 𝑣𝑢)
1512, 14anbi12i 460 . 2 ((¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢) ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢))
1610, 15bitr4di 198 1 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2164   class class class wbr 4029   E cep 4318  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-eprel 4320  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator