Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnti GIF version

Theorem nnti 13362
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
Hypothesis
Ref Expression
nnti.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
nnti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))

Proof of Theorem nnti
StepHypRef Expression
1 simprl 521 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑢𝐴)
2 nnti.a . . . . 5 (𝜑𝐴 ∈ ω)
32adantr 274 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝐴 ∈ ω)
4 elnn 4527 . . . 4 ((𝑢𝐴𝐴 ∈ ω) → 𝑢 ∈ ω)
51, 3, 4syl2anc 409 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑢 ∈ ω)
6 simprr 522 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑣𝐴)
7 elnn 4527 . . . 4 ((𝑣𝐴𝐴 ∈ ω) → 𝑣 ∈ ω)
86, 3, 7syl2anc 409 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → 𝑣 ∈ ω)
9 nntri3 6401 . . 3 ((𝑢 ∈ ω ∧ 𝑣 ∈ ω) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢)))
105, 8, 9syl2anc 409 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢)))
11 epel 4222 . . . 4 (𝑢 E 𝑣𝑢𝑣)
1211notbii 658 . . 3 𝑢 E 𝑣 ↔ ¬ 𝑢𝑣)
13 epel 4222 . . . 4 (𝑣 E 𝑢𝑣𝑢)
1413notbii 658 . . 3 𝑣 E 𝑢 ↔ ¬ 𝑣𝑢)
1512, 14anbi12i 456 . 2 ((¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢) ↔ (¬ 𝑢𝑣 ∧ ¬ 𝑣𝑢))
1610, 15syl6bbr 197 1 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1481   class class class wbr 3937   E cep 4217  ωcom 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-eprel 4219  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator