ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcel GIF version

Theorem unsnfidcel 6886
Description: The ¬ 𝐵𝐴 condition in unsnfi 6884. This is intended to show that unsnfi 6884 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcel ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)

Proof of Theorem unsnfidcel
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6727 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1008 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6727 . . . . . . 7 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
54biimpi 119 . . . . . 6 ((𝐴 ∪ {𝐵}) ∈ Fin → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
653ad2ant3 1010 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
76adantr 274 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
8 simprr 522 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
98ad2antrr 480 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
10 simprr 522 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
1110ad3antrrr 484 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴𝑛)
12 simplr 520 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝑚 = 𝑛)
1311, 12breqtrrd 4010 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴𝑚)
1413ensymd 6749 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝑚𝐴)
15 entr 6750 . . . . . . . . 9 (((𝐴 ∪ {𝐵}) ≈ 𝑚𝑚𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝐴)
169, 14, 15syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝐴)
1716ensymd 6749 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴 ≈ (𝐴 ∪ {𝐵}))
18 simp1 987 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → 𝐴 ∈ Fin)
1918ad4antr 486 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴 ∈ Fin)
20 simpl2 991 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
2120ad3antrrr 484 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵𝑉)
2221elexd 2739 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ V)
23 simpr 109 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → ¬ 𝐵𝐴)
2422, 23eldifd 3126 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ (V ∖ 𝐴))
25 php5fin 6848 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2619, 24, 25syl2anc 409 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2717, 26pm2.65da 651 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → ¬ ¬ 𝐵𝐴)
2827olcd 724 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
298ad2antrr 480 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
30 snssi 3717 . . . . . . . . . . . . . 14 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
31 ssequn2 3295 . . . . . . . . . . . . . 14 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
3230, 31sylib 121 . . . . . . . . . . . . 13 (𝐵𝐴 → (𝐴 ∪ {𝐵}) = 𝐴)
3332breq1d 3992 . . . . . . . . . . . 12 (𝐵𝐴 → ((𝐴 ∪ {𝐵}) ≈ 𝑚𝐴𝑚))
3433adantl 275 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → ((𝐴 ∪ {𝐵}) ≈ 𝑚𝐴𝑚))
3529, 34mpbid 146 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝐴𝑚)
3635ensymd 6749 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚𝐴)
3710ad3antrrr 484 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝐴𝑛)
38 entr 6750 . . . . . . . . 9 ((𝑚𝐴𝐴𝑛) → 𝑚𝑛)
3936, 37, 38syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚𝑛)
40 simprl 521 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑚 ∈ ω)
4140ad2antrr 480 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚 ∈ ω)
42 simprl 521 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
4342ad3antrrr 484 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑛 ∈ ω)
44 nneneq 6823 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛𝑚 = 𝑛))
4541, 43, 44syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → (𝑚𝑛𝑚 = 𝑛))
4639, 45mpbid 146 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚 = 𝑛)
47 simplr 520 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → ¬ 𝑚 = 𝑛)
4846, 47pm2.65da 651 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → ¬ 𝐵𝐴)
4948orcd 723 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
5042adantr 274 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑛 ∈ ω)
51 nndceq 6467 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → DECID 𝑚 = 𝑛)
5240, 50, 51syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → DECID 𝑚 = 𝑛)
53 exmiddc 826 . . . . . 6 (DECID 𝑚 = 𝑛 → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5452, 53syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5528, 49, 54mpjaodan 788 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
567, 55rexlimddv 2588 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
573, 56rexlimddv 2588 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
58 df-dc 825 . 2 (DECID ¬ 𝐵𝐴 ↔ (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
5957, 58sylibr 133 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wrex 2445  Vcvv 2726  cdif 3113  cun 3114  wss 3116  {csn 3576   class class class wbr 3982  ωcom 4567  cen 6704  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator