ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcel GIF version

Theorem unsnfidcel 7091
Description: The ¬ 𝐵𝐴 condition in unsnfi 7089. This is intended to show that unsnfi 7089 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcel ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)

Proof of Theorem unsnfidcel
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6920 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1042 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6920 . . . . . . 7 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
54biimpi 120 . . . . . 6 ((𝐴 ∪ {𝐵}) ∈ Fin → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
653ad2ant3 1044 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
76adantr 276 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
8 simprr 531 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
98ad2antrr 488 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
10 simprr 531 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
1110ad3antrrr 492 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴𝑛)
12 simplr 528 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝑚 = 𝑛)
1311, 12breqtrrd 4111 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴𝑚)
1413ensymd 6943 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝑚𝐴)
15 entr 6944 . . . . . . . . 9 (((𝐴 ∪ {𝐵}) ≈ 𝑚𝑚𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝐴)
169, 14, 15syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝐴)
1716ensymd 6943 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴 ≈ (𝐴 ∪ {𝐵}))
18 simp1 1021 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → 𝐴 ∈ Fin)
1918ad4antr 494 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴 ∈ Fin)
20 simpl2 1025 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
2120ad3antrrr 492 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵𝑉)
2221elexd 2813 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ V)
23 simpr 110 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → ¬ 𝐵𝐴)
2422, 23eldifd 3207 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ (V ∖ 𝐴))
25 php5fin 7052 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2619, 24, 25syl2anc 411 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2717, 26pm2.65da 665 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → ¬ ¬ 𝐵𝐴)
2827olcd 739 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
298ad2antrr 488 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
30 snssi 3812 . . . . . . . . . . . . . 14 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
31 ssequn2 3377 . . . . . . . . . . . . . 14 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
3230, 31sylib 122 . . . . . . . . . . . . 13 (𝐵𝐴 → (𝐴 ∪ {𝐵}) = 𝐴)
3332breq1d 4093 . . . . . . . . . . . 12 (𝐵𝐴 → ((𝐴 ∪ {𝐵}) ≈ 𝑚𝐴𝑚))
3433adantl 277 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → ((𝐴 ∪ {𝐵}) ≈ 𝑚𝐴𝑚))
3529, 34mpbid 147 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝐴𝑚)
3635ensymd 6943 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚𝐴)
3710ad3antrrr 492 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝐴𝑛)
38 entr 6944 . . . . . . . . 9 ((𝑚𝐴𝐴𝑛) → 𝑚𝑛)
3936, 37, 38syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚𝑛)
40 simprl 529 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑚 ∈ ω)
4140ad2antrr 488 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚 ∈ ω)
42 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
4342ad3antrrr 492 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑛 ∈ ω)
44 nneneq 7026 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛𝑚 = 𝑛))
4541, 43, 44syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → (𝑚𝑛𝑚 = 𝑛))
4639, 45mpbid 147 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚 = 𝑛)
47 simplr 528 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → ¬ 𝑚 = 𝑛)
4846, 47pm2.65da 665 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → ¬ 𝐵𝐴)
4948orcd 738 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
5042adantr 276 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑛 ∈ ω)
51 nndceq 6653 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → DECID 𝑚 = 𝑛)
5240, 50, 51syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → DECID 𝑚 = 𝑛)
53 exmiddc 841 . . . . . 6 (DECID 𝑚 = 𝑛 → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5452, 53syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5528, 49, 54mpjaodan 803 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
567, 55rexlimddv 2653 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
573, 56rexlimddv 2653 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
58 df-dc 840 . 2 (DECID ¬ 𝐵𝐴 ↔ (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
5957, 58sylibr 134 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799  cdif 3194  cun 3195  wss 3197  {csn 3666   class class class wbr 4083  ωcom 4682  cen 6893  Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator