ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcel GIF version

Theorem unsnfidcel 6898
Description: The ¬ 𝐵𝐴 condition in unsnfi 6896. This is intended to show that unsnfi 6896 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcel ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)

Proof of Theorem unsnfidcel
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6739 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1013 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6739 . . . . . . 7 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
54biimpi 119 . . . . . 6 ((𝐴 ∪ {𝐵}) ∈ Fin → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
653ad2ant3 1015 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
76adantr 274 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
8 simprr 527 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
98ad2antrr 485 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
10 simprr 527 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
1110ad3antrrr 489 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴𝑛)
12 simplr 525 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝑚 = 𝑛)
1311, 12breqtrrd 4017 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴𝑚)
1413ensymd 6761 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝑚𝐴)
15 entr 6762 . . . . . . . . 9 (((𝐴 ∪ {𝐵}) ≈ 𝑚𝑚𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝐴)
169, 14, 15syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝐴)
1716ensymd 6761 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴 ≈ (𝐴 ∪ {𝐵}))
18 simp1 992 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → 𝐴 ∈ Fin)
1918ad4antr 491 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐴 ∈ Fin)
20 simpl2 996 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
2120ad3antrrr 489 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵𝑉)
2221elexd 2743 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ V)
23 simpr 109 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → ¬ 𝐵𝐴)
2422, 23eldifd 3131 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ (V ∖ 𝐴))
25 php5fin 6860 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2619, 24, 25syl2anc 409 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ ¬ 𝐵𝐴) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2717, 26pm2.65da 656 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → ¬ ¬ 𝐵𝐴)
2827olcd 729 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
298ad2antrr 485 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
30 snssi 3724 . . . . . . . . . . . . . 14 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
31 ssequn2 3300 . . . . . . . . . . . . . 14 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
3230, 31sylib 121 . . . . . . . . . . . . 13 (𝐵𝐴 → (𝐴 ∪ {𝐵}) = 𝐴)
3332breq1d 3999 . . . . . . . . . . . 12 (𝐵𝐴 → ((𝐴 ∪ {𝐵}) ≈ 𝑚𝐴𝑚))
3433adantl 275 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → ((𝐴 ∪ {𝐵}) ≈ 𝑚𝐴𝑚))
3529, 34mpbid 146 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝐴𝑚)
3635ensymd 6761 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚𝐴)
3710ad3antrrr 489 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝐴𝑛)
38 entr 6762 . . . . . . . . 9 ((𝑚𝐴𝐴𝑛) → 𝑚𝑛)
3936, 37, 38syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚𝑛)
40 simprl 526 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑚 ∈ ω)
4140ad2antrr 485 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚 ∈ ω)
42 simprl 526 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
4342ad3antrrr 489 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑛 ∈ ω)
44 nneneq 6835 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛𝑚 = 𝑛))
4541, 43, 44syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → (𝑚𝑛𝑚 = 𝑛))
4639, 45mpbid 146 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → 𝑚 = 𝑛)
47 simplr 525 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ 𝐵𝐴) → ¬ 𝑚 = 𝑛)
4846, 47pm2.65da 656 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → ¬ 𝐵𝐴)
4948orcd 728 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
5042adantr 274 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑛 ∈ ω)
51 nndceq 6478 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → DECID 𝑚 = 𝑛)
5240, 50, 51syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → DECID 𝑚 = 𝑛)
53 exmiddc 831 . . . . . 6 (DECID 𝑚 = 𝑛 → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5452, 53syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5528, 49, 54mpjaodan 793 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
567, 55rexlimddv 2592 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
573, 56rexlimddv 2592 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
58 df-dc 830 . 2 (DECID ¬ 𝐵𝐴 ↔ (¬ 𝐵𝐴 ∨ ¬ ¬ 𝐵𝐴))
5957, 58sylibr 133 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  wrex 2449  Vcvv 2730  cdif 3118  cun 3119  wss 3121  {csn 3583   class class class wbr 3989  ωcom 4574  cen 6716  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator