| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspun0 | GIF version | ||
| Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.) |
| Ref | Expression |
|---|---|
| lspun0.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspun0.o | ⊢ 0 = (0g‘𝑊) |
| lspun0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspun0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspun0.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| Ref | Expression |
|---|---|
| lspun0 | ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspun0.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lspun0.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
| 3 | lspun0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lspun0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 5 | 3, 4 | lmod0vcl 14246 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
| 6 | 1, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑉) |
| 7 | 6 | snssd 3792 | . . 3 ⊢ (𝜑 → { 0 } ⊆ 𝑉) |
| 8 | lspun0.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 9 | 3, 8 | lspun 14331 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ∧ { 0 } ⊆ 𝑉) → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
| 10 | 1, 2, 7, 9 | syl3anc 1252 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
| 11 | 4, 8 | lspsn0 14351 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
| 12 | 1, 11 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
| 13 | 12 | uneq2d 3338 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = ((𝑁‘𝑋) ∪ { 0 })) |
| 14 | eqid 2209 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 15 | 3, 14, 8 | lspcl 14320 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
| 16 | 1, 2, 15 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
| 17 | 4, 14 | lss0ss 14300 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘𝑋)) |
| 18 | 1, 16, 17 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → { 0 } ⊆ (𝑁‘𝑋)) |
| 19 | ssequn2 3357 | . . . . . 6 ⊢ ({ 0 } ⊆ (𝑁‘𝑋) ↔ ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) | |
| 20 | 18, 19 | sylib 122 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) |
| 21 | 13, 20 | eqtrd 2242 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = (𝑁‘𝑋)) |
| 22 | 21 | fveq2d 5607 | . . 3 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘(𝑁‘𝑋))) |
| 23 | 3, 8 | lspidm 14330 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 24 | 1, 2, 23 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 25 | 22, 24 | eqtrd 2242 | . 2 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘𝑋)) |
| 26 | 10, 25 | eqtrd 2242 | 1 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∪ cun 3175 ⊆ wss 3177 {csn 3646 ‘cfv 5294 Basecbs 12998 0gc0g 13255 LModclmod 14216 LSubSpclss 14281 LSpanclspn 14315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-sbg 13504 df-mgp 13850 df-ur 13889 df-ring 13927 df-lmod 14218 df-lssm 14282 df-lsp 14316 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |