![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspun0 | GIF version |
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
lspun0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspun0.o | ⊢ 0 = (0g‘𝑊) |
lspun0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspun0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspun0.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
lspun0 | ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspun0.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspun0.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
3 | lspun0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lspun0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
5 | 3, 4 | lmod0vcl 13816 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
6 | 1, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑉) |
7 | 6 | snssd 3764 | . . 3 ⊢ (𝜑 → { 0 } ⊆ 𝑉) |
8 | lspun0.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 3, 8 | lspun 13901 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ∧ { 0 } ⊆ 𝑉) → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
10 | 1, 2, 7, 9 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
11 | 4, 8 | lspsn0 13921 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
12 | 1, 11 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
13 | 12 | uneq2d 3314 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = ((𝑁‘𝑋) ∪ { 0 })) |
14 | eqid 2193 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
15 | 3, 14, 8 | lspcl 13890 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
16 | 1, 2, 15 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
17 | 4, 14 | lss0ss 13870 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘𝑋)) |
18 | 1, 16, 17 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → { 0 } ⊆ (𝑁‘𝑋)) |
19 | ssequn2 3333 | . . . . . 6 ⊢ ({ 0 } ⊆ (𝑁‘𝑋) ↔ ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) | |
20 | 18, 19 | sylib 122 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) |
21 | 13, 20 | eqtrd 2226 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = (𝑁‘𝑋)) |
22 | 21 | fveq2d 5559 | . . 3 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘(𝑁‘𝑋))) |
23 | 3, 8 | lspidm 13900 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
24 | 1, 2, 23 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
25 | 22, 24 | eqtrd 2226 | . 2 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘𝑋)) |
26 | 10, 25 | eqtrd 2226 | 1 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 ⊆ wss 3154 {csn 3619 ‘cfv 5255 Basecbs 12621 0gc0g 12870 LModclmod 13786 LSubSpclss 13851 LSpanclspn 13885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-mgp 13420 df-ur 13459 df-ring 13497 df-lmod 13788 df-lssm 13852 df-lsp 13886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |