ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemr GIF version

Theorem fidcenumlemr 6664
Description: Lemma for fidcenum 6665. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
fidcenumlemr.n (𝜑𝑁 ∈ ω)
fidcenumlemr.f (𝜑𝐹:𝑁onto𝐴)
Assertion
Ref Expression
fidcenumlemr (𝜑𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem fidcenumlemr
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidcenumlemr.f . . 3 (𝜑𝐹:𝑁onto𝐴)
2 foima 5238 . . 3 (𝐹:𝑁onto𝐴 → (𝐹𝑁) = 𝐴)
31, 2syl 14 . 2 (𝜑 → (𝐹𝑁) = 𝐴)
4 ssid 3044 . . 3 𝑁𝑁
5 fidcenumlemr.n . . . . 5 (𝜑𝑁 ∈ ω)
65adantr 270 . . . 4 ((𝜑𝑁𝑁) → 𝑁 ∈ ω)
7 sseq1 3047 . . . . . . 7 (𝑤 = ∅ → (𝑤𝑁 ↔ ∅ ⊆ 𝑁))
87anbi2d 452 . . . . . 6 (𝑤 = ∅ → ((𝜑𝑤𝑁) ↔ (𝜑 ∧ ∅ ⊆ 𝑁)))
9 imaeq2 4770 . . . . . . 7 (𝑤 = ∅ → (𝐹𝑤) = (𝐹 “ ∅))
109eleq1d 2156 . . . . . 6 (𝑤 = ∅ → ((𝐹𝑤) ∈ Fin ↔ (𝐹 “ ∅) ∈ Fin))
118, 10imbi12d 232 . . . . 5 (𝑤 = ∅ → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝐹 “ ∅) ∈ Fin)))
12 sseq1 3047 . . . . . . 7 (𝑤 = 𝑘 → (𝑤𝑁𝑘𝑁))
1312anbi2d 452 . . . . . 6 (𝑤 = 𝑘 → ((𝜑𝑤𝑁) ↔ (𝜑𝑘𝑁)))
14 imaeq2 4770 . . . . . . 7 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1514eleq1d 2156 . . . . . 6 (𝑤 = 𝑘 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝑘) ∈ Fin))
1613, 15imbi12d 232 . . . . 5 (𝑤 = 𝑘 → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)))
17 sseq1 3047 . . . . . . 7 (𝑤 = suc 𝑘 → (𝑤𝑁 ↔ suc 𝑘𝑁))
1817anbi2d 452 . . . . . 6 (𝑤 = suc 𝑘 → ((𝜑𝑤𝑁) ↔ (𝜑 ∧ suc 𝑘𝑁)))
19 imaeq2 4770 . . . . . . 7 (𝑤 = suc 𝑘 → (𝐹𝑤) = (𝐹 “ suc 𝑘))
2019eleq1d 2156 . . . . . 6 (𝑤 = suc 𝑘 → ((𝐹𝑤) ∈ Fin ↔ (𝐹 “ suc 𝑘) ∈ Fin))
2118, 20imbi12d 232 . . . . 5 (𝑤 = suc 𝑘 → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑 ∧ suc 𝑘𝑁) → (𝐹 “ suc 𝑘) ∈ Fin)))
22 sseq1 3047 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑁𝑁𝑁))
2322anbi2d 452 . . . . . 6 (𝑤 = 𝑁 → ((𝜑𝑤𝑁) ↔ (𝜑𝑁𝑁)))
24 imaeq2 4770 . . . . . . 7 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
2524eleq1d 2156 . . . . . 6 (𝑤 = 𝑁 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝑁) ∈ Fin))
2623, 25imbi12d 232 . . . . 5 (𝑤 = 𝑁 → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑𝑁𝑁) → (𝐹𝑁) ∈ Fin)))
27 ima0 4791 . . . . . . 7 (𝐹 “ ∅) = ∅
28 0fin 6600 . . . . . . 7 ∅ ∈ Fin
2927, 28eqeltri 2160 . . . . . 6 (𝐹 “ ∅) ∈ Fin
3029a1i 9 . . . . 5 ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝐹 “ ∅) ∈ Fin)
31 simprl 498 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝜑)
32 fofn 5235 . . . . . . . . . . . . . . 15 (𝐹:𝑁onto𝐴𝐹 Fn 𝑁)
331, 32syl 14 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝑁)
3431, 33syl 14 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝐹 Fn 𝑁)
35 simprr 499 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → suc 𝑘𝑁)
36 vex 2622 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
3736sucid 4244 . . . . . . . . . . . . . . 15 𝑘 ∈ suc 𝑘
3837a1i 9 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘 ∈ suc 𝑘)
3935, 38sseldd 3026 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘𝑁)
40 fnsnfv 5363 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑁𝑘𝑁) → {(𝐹𝑘)} = (𝐹 “ {𝑘}))
4134, 39, 40syl2anc 403 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → {(𝐹𝑘)} = (𝐹 “ {𝑘}))
4241uneq2d 3154 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = ((𝐹𝑘) ∪ (𝐹 “ {𝑘})))
43 df-suc 4198 . . . . . . . . . . . . 13 suc 𝑘 = (𝑘 ∪ {𝑘})
4443imaeq2i 4772 . . . . . . . . . . . 12 (𝐹 “ suc 𝑘) = (𝐹 “ (𝑘 ∪ {𝑘}))
45 imaundi 4844 . . . . . . . . . . . 12 (𝐹 “ (𝑘 ∪ {𝑘})) = ((𝐹𝑘) ∪ (𝐹 “ {𝑘}))
4644, 45eqtri 2108 . . . . . . . . . . 11 (𝐹 “ suc 𝑘) = ((𝐹𝑘) ∪ (𝐹 “ {𝑘}))
4742, 46syl6eqr 2138 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹 “ suc 𝑘))
4847adantr 270 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹 “ suc 𝑘))
49 simpr 108 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ (𝐹𝑘))
5049snssd 3582 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → {(𝐹𝑘)} ⊆ (𝐹𝑘))
51 ssequn2 3173 . . . . . . . . . 10 ({(𝐹𝑘)} ⊆ (𝐹𝑘) ↔ ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹𝑘))
5250, 51sylib 120 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹𝑘))
5348, 52eqtr3d 2122 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹 “ suc 𝑘) = (𝐹𝑘))
54 sssucid 4242 . . . . . . . . . . . 12 𝑘 ⊆ suc 𝑘
55 sstr 3033 . . . . . . . . . . . 12 ((𝑘 ⊆ suc 𝑘 ∧ suc 𝑘𝑁) → 𝑘𝑁)
5654, 55mpan 415 . . . . . . . . . . 11 (suc 𝑘𝑁𝑘𝑁)
5756ad2antll 475 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘𝑁)
58 simplr 497 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin))
5931, 57, 58mp2and 424 . . . . . . . . 9 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → (𝐹𝑘) ∈ Fin)
6059adantr 270 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ Fin)
6153, 60eqeltrd 2164 . . . . . . 7 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹 “ suc 𝑘) ∈ Fin)
6247adantr 270 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹 “ suc 𝑘))
6359adantr 270 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ Fin)
6431, 1syl 14 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝐹:𝑁onto𝐴)
65 fof 5233 . . . . . . . . . . . 12 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
6664, 65syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝐹:𝑁𝐴)
6766, 39ffvelrnd 5435 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → (𝐹𝑘) ∈ 𝐴)
6867adantr 270 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ 𝐴)
69 simpr 108 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ¬ (𝐹𝑘) ∈ (𝐹𝑘))
70 unsnfi 6629 . . . . . . . . 9 (((𝐹𝑘) ∈ Fin ∧ (𝐹𝑘) ∈ 𝐴 ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) ∈ Fin)
7163, 68, 69, 70syl3anc 1174 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) ∈ Fin)
7262, 71eqeltrrd 2165 . . . . . . 7 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹 “ suc 𝑘) ∈ Fin)
73 fidcenumlemr.dc . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
7431, 73syl 14 . . . . . . . 8 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
7531, 5syl 14 . . . . . . . 8 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑁 ∈ ω)
76 simpll 496 . . . . . . . 8 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘 ∈ ω)
7774, 75, 64, 76, 57, 67fidcenumlemrk 6663 . . . . . . 7 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝐹𝑘) ∈ (𝐹𝑘) ∨ ¬ (𝐹𝑘) ∈ (𝐹𝑘)))
7861, 72, 77mpjaodan 747 . . . . . 6 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → (𝐹 “ suc 𝑘) ∈ Fin)
7978exp31 356 . . . . 5 (𝑘 ∈ ω → (((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin) → ((𝜑 ∧ suc 𝑘𝑁) → (𝐹 “ suc 𝑘) ∈ Fin)))
8011, 16, 21, 26, 30, 79finds 4415 . . . 4 (𝑁 ∈ ω → ((𝜑𝑁𝑁) → (𝐹𝑁) ∈ Fin))
816, 80mpcom 36 . . 3 ((𝜑𝑁𝑁) → (𝐹𝑁) ∈ Fin)
824, 81mpan2 416 . 2 (𝜑 → (𝐹𝑁) ∈ Fin)
833, 82eqeltrrd 2165 1 (𝜑𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  DECID wdc 780   = wceq 1289  wcel 1438  wral 2359  cun 2997  wss 2999  c0 3286  {csn 3446  suc csuc 4192  ωcom 4405  cima 4441   Fn wfn 5010  wf 5011  ontowfo 5013  cfv 5015  Fincfn 6457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-1o 6181  df-er 6292  df-en 6458  df-fin 6460
This theorem is referenced by:  fidcenum  6665
  Copyright terms: Public domain W3C validator