Step | Hyp | Ref
| Expression |
1 | | fidcenumlemr.f |
. . 3
⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) |
2 | | foima 5415 |
. . 3
⊢ (𝐹:𝑁–onto→𝐴 → (𝐹 “ 𝑁) = 𝐴) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → (𝐹 “ 𝑁) = 𝐴) |
4 | | ssid 3162 |
. . 3
⊢ 𝑁 ⊆ 𝑁 |
5 | | fidcenumlemr.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ω) |
6 | 5 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ⊆ 𝑁) → 𝑁 ∈ ω) |
7 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝑁 ↔ ∅ ⊆ 𝑁)) |
8 | 7 | anbi2d 460 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ ∅ ⊆ 𝑁))) |
9 | | imaeq2 4942 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝐹 “ 𝑤) = (𝐹 “ ∅)) |
10 | 9 | eleq1d 2235 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝐹 “ 𝑤) ∈ Fin ↔ (𝐹 “ ∅) ∈
Fin)) |
11 | 8, 10 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = ∅ → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝐹 “ 𝑤) ∈ Fin) ↔ ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝐹 “ ∅) ∈
Fin))) |
12 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝑤 ⊆ 𝑁 ↔ 𝑘 ⊆ 𝑁)) |
13 | 12 | anbi2d 460 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ 𝑘 ⊆ 𝑁))) |
14 | | imaeq2 4942 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝐹 “ 𝑤) = (𝐹 “ 𝑘)) |
15 | 14 | eleq1d 2235 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝐹 “ 𝑤) ∈ Fin ↔ (𝐹 “ 𝑘) ∈ Fin)) |
16 | 13, 15 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑘 → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝐹 “ 𝑤) ∈ Fin) ↔ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin))) |
17 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → (𝑤 ⊆ 𝑁 ↔ suc 𝑘 ⊆ 𝑁)) |
18 | 17 | anbi2d 460 |
. . . . . 6
⊢ (𝑤 = suc 𝑘 → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ suc 𝑘 ⊆ 𝑁))) |
19 | | imaeq2 4942 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → (𝐹 “ 𝑤) = (𝐹 “ suc 𝑘)) |
20 | 19 | eleq1d 2235 |
. . . . . 6
⊢ (𝑤 = suc 𝑘 → ((𝐹 “ 𝑤) ∈ Fin ↔ (𝐹 “ suc 𝑘) ∈ Fin)) |
21 | 18, 20 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = suc 𝑘 → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝐹 “ 𝑤) ∈ Fin) ↔ ((𝜑 ∧ suc 𝑘 ⊆ 𝑁) → (𝐹 “ suc 𝑘) ∈ Fin))) |
22 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑤 ⊆ 𝑁 ↔ 𝑁 ⊆ 𝑁)) |
23 | 22 | anbi2d 460 |
. . . . . 6
⊢ (𝑤 = 𝑁 → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ 𝑁 ⊆ 𝑁))) |
24 | | imaeq2 4942 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝐹 “ 𝑤) = (𝐹 “ 𝑁)) |
25 | 24 | eleq1d 2235 |
. . . . . 6
⊢ (𝑤 = 𝑁 → ((𝐹 “ 𝑤) ∈ Fin ↔ (𝐹 “ 𝑁) ∈ Fin)) |
26 | 23, 25 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑁 → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝐹 “ 𝑤) ∈ Fin) ↔ ((𝜑 ∧ 𝑁 ⊆ 𝑁) → (𝐹 “ 𝑁) ∈ Fin))) |
27 | | ima0 4963 |
. . . . . . 7
⊢ (𝐹 “ ∅) =
∅ |
28 | | 0fin 6850 |
. . . . . . 7
⊢ ∅
∈ Fin |
29 | 27, 28 | eqeltri 2239 |
. . . . . 6
⊢ (𝐹 “ ∅) ∈
Fin |
30 | 29 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝐹 “ ∅) ∈
Fin) |
31 | | simprl 521 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝜑) |
32 | | fofn 5412 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑁–onto→𝐴 → 𝐹 Fn 𝑁) |
33 | 1, 32 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝑁) |
34 | 31, 33 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝐹 Fn 𝑁) |
35 | | simprr 522 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → suc 𝑘 ⊆ 𝑁) |
36 | | vex 2729 |
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V |
37 | 36 | sucid 4395 |
. . . . . . . . . . . . . . 15
⊢ 𝑘 ∈ suc 𝑘 |
38 | 37 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝑘 ∈ suc 𝑘) |
39 | 35, 38 | sseldd 3143 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝑘 ∈ 𝑁) |
40 | | fnsnfv 5545 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑁 ∧ 𝑘 ∈ 𝑁) → {(𝐹‘𝑘)} = (𝐹 “ {𝑘})) |
41 | 34, 39, 40 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → {(𝐹‘𝑘)} = (𝐹 “ {𝑘})) |
42 | 41 | uneq2d 3276 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) = ((𝐹 “ 𝑘) ∪ (𝐹 “ {𝑘}))) |
43 | | df-suc 4349 |
. . . . . . . . . . . . 13
⊢ suc 𝑘 = (𝑘 ∪ {𝑘}) |
44 | 43 | imaeq2i 4944 |
. . . . . . . . . . . 12
⊢ (𝐹 “ suc 𝑘) = (𝐹 “ (𝑘 ∪ {𝑘})) |
45 | | imaundi 5016 |
. . . . . . . . . . . 12
⊢ (𝐹 “ (𝑘 ∪ {𝑘})) = ((𝐹 “ 𝑘) ∪ (𝐹 “ {𝑘})) |
46 | 44, 45 | eqtri 2186 |
. . . . . . . . . . 11
⊢ (𝐹 “ suc 𝑘) = ((𝐹 “ 𝑘) ∪ (𝐹 “ {𝑘})) |
47 | 42, 46 | eqtr4di 2217 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) = (𝐹 “ suc 𝑘)) |
48 | 47 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) = (𝐹 “ suc 𝑘)) |
49 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) |
50 | 49 | snssd 3718 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → {(𝐹‘𝑘)} ⊆ (𝐹 “ 𝑘)) |
51 | | ssequn2 3295 |
. . . . . . . . . 10
⊢ ({(𝐹‘𝑘)} ⊆ (𝐹 “ 𝑘) ↔ ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) = (𝐹 “ 𝑘)) |
52 | 50, 51 | sylib 121 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) = (𝐹 “ 𝑘)) |
53 | 48, 52 | eqtr3d 2200 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → (𝐹 “ suc 𝑘) = (𝐹 “ 𝑘)) |
54 | | sssucid 4393 |
. . . . . . . . . . . 12
⊢ 𝑘 ⊆ suc 𝑘 |
55 | | sstr 3150 |
. . . . . . . . . . . 12
⊢ ((𝑘 ⊆ suc 𝑘 ∧ suc 𝑘 ⊆ 𝑁) → 𝑘 ⊆ 𝑁) |
56 | 54, 55 | mpan 421 |
. . . . . . . . . . 11
⊢ (suc
𝑘 ⊆ 𝑁 → 𝑘 ⊆ 𝑁) |
57 | 56 | ad2antll 483 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝑘 ⊆ 𝑁) |
58 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) |
59 | 31, 57, 58 | mp2and 430 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → (𝐹 “ 𝑘) ∈ Fin) |
60 | 59 | adantr 274 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → (𝐹 “ 𝑘) ∈ Fin) |
61 | 53, 60 | eqeltrd 2243 |
. . . . . . 7
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → (𝐹 “ suc 𝑘) ∈ Fin) |
62 | 47 | adantr 274 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) = (𝐹 “ suc 𝑘)) |
63 | 59 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → (𝐹 “ 𝑘) ∈ Fin) |
64 | 31, 1 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝐹:𝑁–onto→𝐴) |
65 | | fof 5410 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑁–onto→𝐴 → 𝐹:𝑁⟶𝐴) |
66 | 64, 65 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝐹:𝑁⟶𝐴) |
67 | 66, 39 | ffvelrnd 5621 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → (𝐹‘𝑘) ∈ 𝐴) |
68 | 67 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → (𝐹‘𝑘) ∈ 𝐴) |
69 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) |
70 | | unsnfi 6884 |
. . . . . . . . 9
⊢ (((𝐹 “ 𝑘) ∈ Fin ∧ (𝐹‘𝑘) ∈ 𝐴 ∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) ∈ Fin) |
71 | 63, 68, 69, 70 | syl3anc 1228 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → ((𝐹 “ 𝑘) ∪ {(𝐹‘𝑘)}) ∈ Fin) |
72 | 62, 71 | eqeltrrd 2244 |
. . . . . . 7
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) ∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘)) → (𝐹 “ suc 𝑘) ∈ Fin) |
73 | | fidcenumlemr.dc |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
74 | 31, 73 | syl 14 |
. . . . . . . 8
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
75 | | simpll 519 |
. . . . . . . 8
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → 𝑘 ∈ ω) |
76 | 74, 64, 75, 57, 67 | fidcenumlemrk 6919 |
. . . . . . 7
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → ((𝐹‘𝑘) ∈ (𝐹 “ 𝑘) ∨ ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑘))) |
77 | 61, 72, 76 | mpjaodan 788 |
. . . . . 6
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘 ⊆ 𝑁)) → (𝐹 “ suc 𝑘) ∈ Fin) |
78 | 77 | exp31 362 |
. . . . 5
⊢ (𝑘 ∈ ω → (((𝜑 ∧ 𝑘 ⊆ 𝑁) → (𝐹 “ 𝑘) ∈ Fin) → ((𝜑 ∧ suc 𝑘 ⊆ 𝑁) → (𝐹 “ suc 𝑘) ∈ Fin))) |
79 | 11, 16, 21, 26, 30, 78 | finds 4577 |
. . . 4
⊢ (𝑁 ∈ ω → ((𝜑 ∧ 𝑁 ⊆ 𝑁) → (𝐹 “ 𝑁) ∈ Fin)) |
80 | 6, 79 | mpcom 36 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ⊆ 𝑁) → (𝐹 “ 𝑁) ∈ Fin) |
81 | 4, 80 | mpan2 422 |
. 2
⊢ (𝜑 → (𝐹 “ 𝑁) ∈ Fin) |
82 | 3, 81 | eqeltrrd 2244 |
1
⊢ (𝜑 → 𝐴 ∈ Fin) |