ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemr GIF version

Theorem fidcenumlemr 7064
Description: Lemma for fidcenum 7065. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
fidcenumlemr.f (𝜑𝐹:𝑁onto𝐴)
fidcenumlemr.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
fidcenumlemr (𝜑𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem fidcenumlemr
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidcenumlemr.f . . 3 (𝜑𝐹:𝑁onto𝐴)
2 foima 5510 . . 3 (𝐹:𝑁onto𝐴 → (𝐹𝑁) = 𝐴)
31, 2syl 14 . 2 (𝜑 → (𝐹𝑁) = 𝐴)
4 ssid 3214 . . 3 𝑁𝑁
5 fidcenumlemr.n . . . . 5 (𝜑𝑁 ∈ ω)
65adantr 276 . . . 4 ((𝜑𝑁𝑁) → 𝑁 ∈ ω)
7 sseq1 3217 . . . . . . 7 (𝑤 = ∅ → (𝑤𝑁 ↔ ∅ ⊆ 𝑁))
87anbi2d 464 . . . . . 6 (𝑤 = ∅ → ((𝜑𝑤𝑁) ↔ (𝜑 ∧ ∅ ⊆ 𝑁)))
9 imaeq2 5023 . . . . . . 7 (𝑤 = ∅ → (𝐹𝑤) = (𝐹 “ ∅))
109eleq1d 2275 . . . . . 6 (𝑤 = ∅ → ((𝐹𝑤) ∈ Fin ↔ (𝐹 “ ∅) ∈ Fin))
118, 10imbi12d 234 . . . . 5 (𝑤 = ∅ → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝐹 “ ∅) ∈ Fin)))
12 sseq1 3217 . . . . . . 7 (𝑤 = 𝑘 → (𝑤𝑁𝑘𝑁))
1312anbi2d 464 . . . . . 6 (𝑤 = 𝑘 → ((𝜑𝑤𝑁) ↔ (𝜑𝑘𝑁)))
14 imaeq2 5023 . . . . . . 7 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1514eleq1d 2275 . . . . . 6 (𝑤 = 𝑘 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝑘) ∈ Fin))
1613, 15imbi12d 234 . . . . 5 (𝑤 = 𝑘 → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)))
17 sseq1 3217 . . . . . . 7 (𝑤 = suc 𝑘 → (𝑤𝑁 ↔ suc 𝑘𝑁))
1817anbi2d 464 . . . . . 6 (𝑤 = suc 𝑘 → ((𝜑𝑤𝑁) ↔ (𝜑 ∧ suc 𝑘𝑁)))
19 imaeq2 5023 . . . . . . 7 (𝑤 = suc 𝑘 → (𝐹𝑤) = (𝐹 “ suc 𝑘))
2019eleq1d 2275 . . . . . 6 (𝑤 = suc 𝑘 → ((𝐹𝑤) ∈ Fin ↔ (𝐹 “ suc 𝑘) ∈ Fin))
2118, 20imbi12d 234 . . . . 5 (𝑤 = suc 𝑘 → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑 ∧ suc 𝑘𝑁) → (𝐹 “ suc 𝑘) ∈ Fin)))
22 sseq1 3217 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑁𝑁𝑁))
2322anbi2d 464 . . . . . 6 (𝑤 = 𝑁 → ((𝜑𝑤𝑁) ↔ (𝜑𝑁𝑁)))
24 imaeq2 5023 . . . . . . 7 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
2524eleq1d 2275 . . . . . 6 (𝑤 = 𝑁 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝑁) ∈ Fin))
2623, 25imbi12d 234 . . . . 5 (𝑤 = 𝑁 → (((𝜑𝑤𝑁) → (𝐹𝑤) ∈ Fin) ↔ ((𝜑𝑁𝑁) → (𝐹𝑁) ∈ Fin)))
27 ima0 5046 . . . . . . 7 (𝐹 “ ∅) = ∅
28 0fin 6988 . . . . . . 7 ∅ ∈ Fin
2927, 28eqeltri 2279 . . . . . 6 (𝐹 “ ∅) ∈ Fin
3029a1i 9 . . . . 5 ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝐹 “ ∅) ∈ Fin)
31 simprl 529 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝜑)
32 fofn 5507 . . . . . . . . . . . . . . 15 (𝐹:𝑁onto𝐴𝐹 Fn 𝑁)
331, 32syl 14 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝑁)
3431, 33syl 14 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝐹 Fn 𝑁)
35 simprr 531 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → suc 𝑘𝑁)
36 vex 2776 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
3736sucid 4468 . . . . . . . . . . . . . . 15 𝑘 ∈ suc 𝑘
3837a1i 9 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘 ∈ suc 𝑘)
3935, 38sseldd 3195 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘𝑁)
40 fnsnfv 5645 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑁𝑘𝑁) → {(𝐹𝑘)} = (𝐹 “ {𝑘}))
4134, 39, 40syl2anc 411 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → {(𝐹𝑘)} = (𝐹 “ {𝑘}))
4241uneq2d 3328 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = ((𝐹𝑘) ∪ (𝐹 “ {𝑘})))
43 df-suc 4422 . . . . . . . . . . . . 13 suc 𝑘 = (𝑘 ∪ {𝑘})
4443imaeq2i 5025 . . . . . . . . . . . 12 (𝐹 “ suc 𝑘) = (𝐹 “ (𝑘 ∪ {𝑘}))
45 imaundi 5100 . . . . . . . . . . . 12 (𝐹 “ (𝑘 ∪ {𝑘})) = ((𝐹𝑘) ∪ (𝐹 “ {𝑘}))
4644, 45eqtri 2227 . . . . . . . . . . 11 (𝐹 “ suc 𝑘) = ((𝐹𝑘) ∪ (𝐹 “ {𝑘}))
4742, 46eqtr4di 2257 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹 “ suc 𝑘))
4847adantr 276 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹 “ suc 𝑘))
49 simpr 110 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ (𝐹𝑘))
5049snssd 3780 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → {(𝐹𝑘)} ⊆ (𝐹𝑘))
51 ssequn2 3347 . . . . . . . . . 10 ({(𝐹𝑘)} ⊆ (𝐹𝑘) ↔ ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹𝑘))
5250, 51sylib 122 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹𝑘))
5348, 52eqtr3d 2241 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹 “ suc 𝑘) = (𝐹𝑘))
54 sssucid 4466 . . . . . . . . . . . 12 𝑘 ⊆ suc 𝑘
55 sstr 3202 . . . . . . . . . . . 12 ((𝑘 ⊆ suc 𝑘 ∧ suc 𝑘𝑁) → 𝑘𝑁)
5654, 55mpan 424 . . . . . . . . . . 11 (suc 𝑘𝑁𝑘𝑁)
5756ad2antll 491 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘𝑁)
58 simplr 528 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin))
5931, 57, 58mp2and 433 . . . . . . . . 9 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → (𝐹𝑘) ∈ Fin)
6059adantr 276 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ Fin)
6153, 60eqeltrd 2283 . . . . . . 7 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹 “ suc 𝑘) ∈ Fin)
6247adantr 276 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) = (𝐹 “ suc 𝑘))
6359adantr 276 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ Fin)
6431, 1syl 14 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝐹:𝑁onto𝐴)
65 fof 5505 . . . . . . . . . . . 12 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
6664, 65syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝐹:𝑁𝐴)
6766, 39ffvelcdmd 5723 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → (𝐹𝑘) ∈ 𝐴)
6867adantr 276 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹𝑘) ∈ 𝐴)
69 simpr 110 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ¬ (𝐹𝑘) ∈ (𝐹𝑘))
70 unsnfi 7023 . . . . . . . . 9 (((𝐹𝑘) ∈ Fin ∧ (𝐹𝑘) ∈ 𝐴 ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) ∈ Fin)
7163, 68, 69, 70syl3anc 1250 . . . . . . . 8 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → ((𝐹𝑘) ∪ {(𝐹𝑘)}) ∈ Fin)
7262, 71eqeltrrd 2284 . . . . . . 7 ((((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) ∧ ¬ (𝐹𝑘) ∈ (𝐹𝑘)) → (𝐹 “ suc 𝑘) ∈ Fin)
73 fidcenumlemr.dc . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
7431, 73syl 14 . . . . . . . 8 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
75 simpll 527 . . . . . . . 8 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → 𝑘 ∈ ω)
7674, 64, 75, 57, 67fidcenumlemrk 7063 . . . . . . 7 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → ((𝐹𝑘) ∈ (𝐹𝑘) ∨ ¬ (𝐹𝑘) ∈ (𝐹𝑘)))
7761, 72, 76mpjaodan 800 . . . . . 6 (((𝑘 ∈ ω ∧ ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin)) ∧ (𝜑 ∧ suc 𝑘𝑁)) → (𝐹 “ suc 𝑘) ∈ Fin)
7877exp31 364 . . . . 5 (𝑘 ∈ ω → (((𝜑𝑘𝑁) → (𝐹𝑘) ∈ Fin) → ((𝜑 ∧ suc 𝑘𝑁) → (𝐹 “ suc 𝑘) ∈ Fin)))
7911, 16, 21, 26, 30, 78finds 4652 . . . 4 (𝑁 ∈ ω → ((𝜑𝑁𝑁) → (𝐹𝑁) ∈ Fin))
806, 79mpcom 36 . . 3 ((𝜑𝑁𝑁) → (𝐹𝑁) ∈ Fin)
814, 80mpan2 425 . 2 (𝜑 → (𝐹𝑁) ∈ Fin)
823, 81eqeltrrd 2284 1 (𝜑𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  cun 3165  wss 3167  c0 3461  {csn 3634  suc csuc 4416  ωcom 4642  cima 4682   Fn wfn 5271  wf 5272  ontowfo 5274  cfv 5276  Fincfn 6834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-1o 6509  df-er 6627  df-en 6835  df-fin 6837
This theorem is referenced by:  fidcenum  7065
  Copyright terms: Public domain W3C validator