ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oav2 GIF version

Theorem oav2 6431
Description: Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.)
Assertion
Ref Expression
oav2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oav2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oafnex 6412 . . 3 (𝑦 ∈ V ↦ suc 𝑦) Fn V
2 rdgival 6350 . . 3 (((𝑦 ∈ V ↦ suc 𝑦) Fn V ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
31, 2mp3an1 1314 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
4 oav 6422 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵))
5 onelon 4362 . . . . . 6 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6 vex 2729 . . . . . . . . . 10 𝑥 ∈ V
7 oaexg 6416 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ V) → (𝐴 +o 𝑥) ∈ V)
86, 7mpan2 422 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 +o 𝑥) ∈ V)
9 sucexg 4475 . . . . . . . . . 10 ((𝐴 +o 𝑥) ∈ V → suc (𝐴 +o 𝑥) ∈ V)
108, 9syl 14 . . . . . . . . 9 (𝐴 ∈ On → suc (𝐴 +o 𝑥) ∈ V)
11 suceq 4380 . . . . . . . . . 10 (𝑦 = (𝐴 +o 𝑥) → suc 𝑦 = suc (𝐴 +o 𝑥))
12 eqid 2165 . . . . . . . . . 10 (𝑦 ∈ V ↦ suc 𝑦) = (𝑦 ∈ V ↦ suc 𝑦)
1311, 12fvmptg 5562 . . . . . . . . 9 (((𝐴 +o 𝑥) ∈ V ∧ suc (𝐴 +o 𝑥) ∈ V) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +o 𝑥)) = suc (𝐴 +o 𝑥))
148, 10, 13syl2anc 409 . . . . . . . 8 (𝐴 ∈ On → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +o 𝑥)) = suc (𝐴 +o 𝑥))
1514adantr 274 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +o 𝑥)) = suc (𝐴 +o 𝑥))
16 oav 6422 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
1716fveq2d 5490 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +o 𝑥)) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
1815, 17eqtr3d 2200 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → suc (𝐴 +o 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
195, 18sylan2 284 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → suc (𝐴 +o 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2019anassrs 398 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → suc (𝐴 +o 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2120iuneq2dv 3887 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 suc (𝐴 +o 𝑥) = 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2221uneq2d 3276 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
233, 4, 223eqtr4d 2208 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cun 3114   ciun 3866  cmpt 4043  Oncon0 4341  suc csuc 4343   Fn wfn 5183  cfv 5188  (class class class)co 5842  reccrdg 6337   +o coa 6381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388
This theorem is referenced by:  oasuc  6432
  Copyright terms: Public domain W3C validator