Step | Hyp | Ref
| Expression |
1 | | exp3vallem.n |
. 2
β’ (π β π β β) |
2 | | fveq2 5516 |
. . . . 5
β’ (π€ = 1 β (seq1( Β· ,
(β Γ {π΄}))βπ€) = (seq1( Β· , (β Γ {π΄}))β1)) |
3 | 2 | breq1d 4014 |
. . . 4
β’ (π€ = 1 β ((seq1( Β· ,
(β Γ {π΄}))βπ€) # 0 β (seq1( Β· , (β
Γ {π΄}))β1) #
0)) |
4 | 3 | imbi2d 230 |
. . 3
β’ (π€ = 1 β ((π β (seq1( Β· , (β Γ
{π΄}))βπ€) # 0) β (π β (seq1( Β· , (β Γ
{π΄}))β1) #
0))) |
5 | | fveq2 5516 |
. . . . 5
β’ (π€ = π β (seq1( Β· , (β Γ
{π΄}))βπ€) = (seq1( Β· , (β
Γ {π΄}))βπ)) |
6 | 5 | breq1d 4014 |
. . . 4
β’ (π€ = π β ((seq1( Β· , (β Γ
{π΄}))βπ€) # 0 β (seq1( Β· ,
(β Γ {π΄}))βπ) # 0)) |
7 | 6 | imbi2d 230 |
. . 3
β’ (π€ = π β ((π β (seq1( Β· , (β Γ
{π΄}))βπ€) # 0) β (π β (seq1( Β· , (β Γ
{π΄}))βπ) # 0))) |
8 | | fveq2 5516 |
. . . . 5
β’ (π€ = (π + 1) β (seq1( Β· , (β
Γ {π΄}))βπ€) = (seq1( Β· , (β
Γ {π΄}))β(π + 1))) |
9 | 8 | breq1d 4014 |
. . . 4
β’ (π€ = (π + 1) β ((seq1( Β· , (β
Γ {π΄}))βπ€) # 0 β (seq1( Β· ,
(β Γ {π΄}))β(π + 1)) # 0)) |
10 | 9 | imbi2d 230 |
. . 3
β’ (π€ = (π + 1) β ((π β (seq1( Β· , (β Γ
{π΄}))βπ€) # 0) β (π β (seq1( Β· , (β Γ
{π΄}))β(π + 1)) # 0))) |
11 | | fveq2 5516 |
. . . . 5
β’ (π€ = π β (seq1( Β· , (β Γ
{π΄}))βπ€) = (seq1( Β· , (β
Γ {π΄}))βπ)) |
12 | 11 | breq1d 4014 |
. . . 4
β’ (π€ = π β ((seq1( Β· , (β Γ
{π΄}))βπ€) # 0 β (seq1( Β· ,
(β Γ {π΄}))βπ) # 0)) |
13 | 12 | imbi2d 230 |
. . 3
β’ (π€ = π β ((π β (seq1( Β· , (β Γ
{π΄}))βπ€) # 0) β (π β (seq1( Β· , (β Γ
{π΄}))βπ) # 0))) |
14 | | 1zzd 9280 |
. . . . . 6
β’ (π β 1 β
β€) |
15 | | exp3vallem.a |
. . . . . . . 8
β’ (π β π΄ β β) |
16 | | elnnuz 9564 |
. . . . . . . . 9
β’ (π₯ β β β π₯ β
(β€β₯β1)) |
17 | 16 | biimpri 133 |
. . . . . . . 8
β’ (π₯ β
(β€β₯β1) β π₯ β β) |
18 | | fvconst2g 5731 |
. . . . . . . 8
β’ ((π΄ β β β§ π₯ β β) β
((β Γ {π΄})βπ₯) = π΄) |
19 | 15, 17, 18 | syl2an 289 |
. . . . . . 7
β’ ((π β§ π₯ β (β€β₯β1))
β ((β Γ {π΄})βπ₯) = π΄) |
20 | 15 | adantr 276 |
. . . . . . 7
β’ ((π β§ π₯ β (β€β₯β1))
β π΄ β
β) |
21 | 19, 20 | eqeltrd 2254 |
. . . . . 6
β’ ((π β§ π₯ β (β€β₯β1))
β ((β Γ {π΄})βπ₯) β β) |
22 | | mulcl 7938 |
. . . . . . 7
β’ ((π₯ β β β§ π¦ β β) β (π₯ Β· π¦) β β) |
23 | 22 | adantl 277 |
. . . . . 6
β’ ((π β§ (π₯ β β β§ π¦ β β)) β (π₯ Β· π¦) β β) |
24 | 14, 21, 23 | seq3-1 10460 |
. . . . 5
β’ (π β (seq1( Β· , (β
Γ {π΄}))β1) =
((β Γ {π΄})β1)) |
25 | | 1nn 8930 |
. . . . . 6
β’ 1 β
β |
26 | | fvconst2g 5731 |
. . . . . 6
β’ ((π΄ β β β§ 1 β
β) β ((β Γ {π΄})β1) = π΄) |
27 | 15, 25, 26 | sylancl 413 |
. . . . 5
β’ (π β ((β Γ {π΄})β1) = π΄) |
28 | 24, 27 | eqtrd 2210 |
. . . 4
β’ (π β (seq1( Β· , (β
Γ {π΄}))β1) =
π΄) |
29 | | exp3vallem.ap |
. . . 4
β’ (π β π΄ # 0) |
30 | 28, 29 | eqbrtrd 4026 |
. . 3
β’ (π β (seq1( Β· , (β
Γ {π΄}))β1) #
0) |
31 | | nnuz 9563 |
. . . . . . . . . . 11
β’ β =
(β€β₯β1) |
32 | 16, 21 | sylan2b 287 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β β) β ((β Γ
{π΄})βπ₯) β
β) |
33 | 31, 14, 32, 23 | seqf 10461 |
. . . . . . . . . 10
β’ (π β seq1( Β· , (β
Γ {π΄})):ββΆβ) |
34 | 33 | adantl 277 |
. . . . . . . . 9
β’ ((π β β β§ π) β seq1( Β· , (β
Γ {π΄})):ββΆβ) |
35 | | simpl 109 |
. . . . . . . . 9
β’ ((π β β β§ π) β π β β) |
36 | 34, 35 | ffvelcdmd 5653 |
. . . . . . . 8
β’ ((π β β β§ π) β (seq1( Β· ,
(β Γ {π΄}))βπ) β β) |
37 | 36 | adantr 276 |
. . . . . . 7
β’ (((π β β β§ π) β§ (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β (seq1( Β· ,
(β Γ {π΄}))βπ) β β) |
38 | 15 | ad2antlr 489 |
. . . . . . 7
β’ (((π β β β§ π) β§ (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β π΄ β β) |
39 | | simpr 110 |
. . . . . . 7
β’ (((π β β β§ π) β§ (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β (seq1( Β· ,
(β Γ {π΄}))βπ) # 0) |
40 | 29 | ad2antlr 489 |
. . . . . . 7
β’ (((π β β β§ π) β§ (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β π΄ # 0) |
41 | 37, 38, 39, 40 | mulap0d 8615 |
. . . . . 6
β’ (((π β β β§ π) β§ (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β ((seq1( Β· ,
(β Γ {π΄}))βπ) Β· π΄) # 0) |
42 | | elnnuz 9564 |
. . . . . . . . . . . 12
β’ (π β β β π β
(β€β₯β1)) |
43 | 42 | biimpi 120 |
. . . . . . . . . . 11
β’ (π β β β π β
(β€β₯β1)) |
44 | 43 | adantr 276 |
. . . . . . . . . 10
β’ ((π β β β§ π) β π β
(β€β₯β1)) |
45 | 21 | adantll 476 |
. . . . . . . . . 10
β’ (((π β β β§ π) β§ π₯ β (β€β₯β1))
β ((β Γ {π΄})βπ₯) β β) |
46 | 22 | adantl 277 |
. . . . . . . . . 10
β’ (((π β β β§ π) β§ (π₯ β β β§ π¦ β β)) β (π₯ Β· π¦) β β) |
47 | 44, 45, 46 | seq3p1 10462 |
. . . . . . . . 9
β’ ((π β β β§ π) β (seq1( Β· ,
(β Γ {π΄}))β(π + 1)) = ((seq1( Β· , (β Γ
{π΄}))βπ) Β· ((β Γ
{π΄})β(π + 1)))) |
48 | 35 | peano2nnd 8934 |
. . . . . . . . . . 11
β’ ((π β β β§ π) β (π + 1) β β) |
49 | | fvconst2g 5731 |
. . . . . . . . . . 11
β’ ((π΄ β β β§ (π + 1) β β) β
((β Γ {π΄})β(π + 1)) = π΄) |
50 | 15, 48, 49 | syl2an2 594 |
. . . . . . . . . 10
β’ ((π β β β§ π) β ((β Γ {π΄})β(π + 1)) = π΄) |
51 | 50 | oveq2d 5891 |
. . . . . . . . 9
β’ ((π β β β§ π) β ((seq1( Β· ,
(β Γ {π΄}))βπ) Β· ((β Γ {π΄})β(π + 1))) = ((seq1( Β· , (β Γ
{π΄}))βπ) Β· π΄)) |
52 | 47, 51 | eqtrd 2210 |
. . . . . . . 8
β’ ((π β β β§ π) β (seq1( Β· ,
(β Γ {π΄}))β(π + 1)) = ((seq1( Β· , (β Γ
{π΄}))βπ) Β· π΄)) |
53 | 52 | breq1d 4014 |
. . . . . . 7
β’ ((π β β β§ π) β ((seq1( Β· ,
(β Γ {π΄}))β(π + 1)) # 0 β ((seq1( Β· , (β
Γ {π΄}))βπ) Β· π΄) # 0)) |
54 | 53 | adantr 276 |
. . . . . 6
β’ (((π β β β§ π) β§ (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β ((seq1( Β· ,
(β Γ {π΄}))β(π + 1)) # 0 β ((seq1( Β· , (β
Γ {π΄}))βπ) Β· π΄) # 0)) |
55 | 41, 54 | mpbird 167 |
. . . . 5
β’ (((π β β β§ π) β§ (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β (seq1( Β· ,
(β Γ {π΄}))β(π + 1)) # 0) |
56 | 55 | exp31 364 |
. . . 4
β’ (π β β β (π β ((seq1( Β· ,
(β Γ {π΄}))βπ) # 0 β (seq1( Β· , (β
Γ {π΄}))β(π + 1)) # 0))) |
57 | 56 | a2d 26 |
. . 3
β’ (π β β β ((π β (seq1( Β· , (β
Γ {π΄}))βπ) # 0) β (π β (seq1( Β· , (β Γ
{π΄}))β(π + 1)) # 0))) |
58 | 4, 7, 10, 13, 30, 57 | nnind 8935 |
. 2
β’ (π β β β (π β (seq1( Β· , (β
Γ {π΄}))βπ) # 0)) |
59 | 1, 58 | mpcom 36 |
1
β’ (π β (seq1( Β· , (β
Γ {π΄}))βπ) # 0) |