ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem GIF version

Theorem exp3vallem 10456
Description: Lemma for exp3val 10457. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a (𝜑𝐴 ∈ ℂ)
exp3vallem.ap (𝜑𝐴 # 0)
exp3vallem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exp3vallem (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)

Proof of Theorem exp3vallem
Dummy variables 𝑘 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5486 . . . . 5 (𝑤 = 1 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘1))
32breq1d 3992 . . . 4 (𝑤 = 1 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘1) # 0))
43imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)))
5 fveq2 5486 . . . . 5 (𝑤 = 𝑘 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑘))
65breq1d 3992 . . . 4 (𝑤 = 𝑘 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0))
76imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)))
8 fveq2 5486 . . . . 5 (𝑤 = (𝑘 + 1) → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)))
98breq1d 3992 . . . 4 (𝑤 = (𝑘 + 1) → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0))
109imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
11 fveq2 5486 . . . . 5 (𝑤 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1211breq1d 3992 . . . 4 (𝑤 = 𝑁 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
1312imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)))
14 1zzd 9218 . . . . . 6 (𝜑 → 1 ∈ ℤ)
15 exp3vallem.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
16 elnnuz 9502 . . . . . . . . 9 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
1716biimpri 132 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
18 fvconst2g 5699 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
1915, 17, 18syl2an 287 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
2015adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
2119, 20eqeltrd 2243 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
22 mulcl 7880 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 275 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
2414, 21, 23seq3-1 10395 . . . . 5 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
25 1nn 8868 . . . . . 6 1 ∈ ℕ
26 fvconst2g 5699 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2715, 25, 26sylancl 410 . . . . 5 (𝜑 → ((ℕ × {𝐴})‘1) = 𝐴)
2824, 27eqtrd 2198 . . . 4 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = 𝐴)
29 exp3vallem.ap . . . 4 (𝜑𝐴 # 0)
3028, 29eqbrtrd 4004 . . 3 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)
31 nnuz 9501 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3216, 21sylan2b 285 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
3331, 14, 32, 23seqf 10396 . . . . . . . . . 10 (𝜑 → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
3433adantl 275 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
35 simpl 108 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
3634, 35ffvelrnd 5621 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3736adantr 274 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3815ad2antlr 481 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 ∈ ℂ)
39 simpr 109 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)
4029ad2antlr 481 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 # 0)
4137, 38, 39, 40mulap0d 8555 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0)
42 elnnuz 9502 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
4342biimpi 119 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
4443adantr 274 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ (ℤ‘1))
4521adantll 468 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
4622adantl 275 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
4744, 45, 46seq3p1 10397 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))))
4835peano2nnd 8872 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝜑) → (𝑘 + 1) ∈ ℕ)
49 fvconst2g 5699 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5015, 48, 49syl2an2 584 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5150oveq2d 5858 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5247, 51eqtrd 2198 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5352breq1d 3992 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5453adantr 274 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5541, 54mpbird 166 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)
5655exp31 362 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , (ℕ × {𝐴}))‘𝑘) # 0 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
5756a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
584, 7, 10, 13, 30, 57nnind 8873 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
591, 58mpcom 36 1 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {csn 3576   class class class wbr 3982   × cxp 4602  wf 5184  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   # cap 8479  cn 8857  cuz 9466  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  exp3val  10457
  Copyright terms: Public domain W3C validator