Step | Hyp | Ref
| Expression |
1 | | exp3vallem.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 1 → (seq1( · ,
(ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘1)) |
3 | 2 | breq1d 3999 |
. . . 4
⊢ (𝑤 = 1 → ((seq1( · ,
(ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ
× {𝐴}))‘1) #
0)) |
4 | 3 | imbi2d 229 |
. . 3
⊢ (𝑤 = 1 → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘1) #
0))) |
5 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑘 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) = (seq1( · , (ℕ
× {𝐴}))‘𝑘)) |
6 | 5 | breq1d 3999 |
. . . 4
⊢ (𝑤 = 𝑘 → ((seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0 ↔ (seq1( · ,
(ℕ × {𝐴}))‘𝑘) # 0)) |
7 | 6 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑘) # 0))) |
8 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (seq1( · , (ℕ
× {𝐴}))‘𝑤) = (seq1( · , (ℕ
× {𝐴}))‘(𝑘 + 1))) |
9 | 8 | breq1d 3999 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((seq1( · , (ℕ
× {𝐴}))‘𝑤) # 0 ↔ (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0)) |
10 | 9 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘(𝑘 + 1)) # 0))) |
11 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) = (seq1( · , (ℕ
× {𝐴}))‘𝑁)) |
12 | 11 | breq1d 3999 |
. . . 4
⊢ (𝑤 = 𝑁 → ((seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0 ↔ (seq1( · ,
(ℕ × {𝐴}))‘𝑁) # 0)) |
13 | 12 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑁) # 0))) |
14 | | 1zzd 9239 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
15 | | exp3vallem.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | | elnnuz 9523 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ ↔ 𝑥 ∈
(ℤ≥‘1)) |
17 | 16 | biimpri 132 |
. . . . . . . 8
⊢ (𝑥 ∈
(ℤ≥‘1) → 𝑥 ∈ ℕ) |
18 | | fvconst2g 5710 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) →
((ℕ × {𝐴})‘𝑥) = 𝐴) |
19 | 15, 17, 18 | syl2an 287 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑥) = 𝐴) |
20 | 15 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ 𝐴 ∈
ℂ) |
21 | 19, 20 | eqeltrd 2247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑥) ∈ ℂ) |
22 | | mulcl 7901 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
23 | 22 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
24 | 14, 21, 23 | seq3-1 10416 |
. . . . 5
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘1) =
((ℕ × {𝐴})‘1)) |
25 | | 1nn 8889 |
. . . . . 6
⊢ 1 ∈
ℕ |
26 | | fvconst2g 5710 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) |
27 | 15, 25, 26 | sylancl 411 |
. . . . 5
⊢ (𝜑 → ((ℕ × {𝐴})‘1) = 𝐴) |
28 | 24, 27 | eqtrd 2203 |
. . . 4
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘1) =
𝐴) |
29 | | exp3vallem.ap |
. . . 4
⊢ (𝜑 → 𝐴 # 0) |
30 | 28, 29 | eqbrtrd 4011 |
. . 3
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘1) #
0) |
31 | | nnuz 9522 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
32 | 16, 21 | sylan2b 285 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝐴})‘𝑥) ∈
ℂ) |
33 | 31, 14, 32, 23 | seqf 10417 |
. . . . . . . . . 10
⊢ (𝜑 → seq1( · , (ℕ
× {𝐴})):ℕ⟶ℂ) |
34 | 33 | adantl 275 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → seq1( · , (ℕ
× {𝐴})):ℕ⟶ℂ) |
35 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ) |
36 | 34, 35 | ffvelrnd 5632 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · ,
(ℕ × {𝐴}))‘𝑘) ∈ ℂ) |
37 | 36 | adantr 274 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (seq1( · ,
(ℕ × {𝐴}))‘𝑘) ∈ ℂ) |
38 | 15 | ad2antlr 486 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → 𝐴 ∈ ℂ) |
39 | | simpr 109 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (seq1( · ,
(ℕ × {𝐴}))‘𝑘) # 0) |
40 | 29 | ad2antlr 486 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → 𝐴 # 0) |
41 | 37, 38, 39, 40 | mulap0d 8576 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → ((seq1( · ,
(ℕ × {𝐴}))‘𝑘) · 𝐴) # 0) |
42 | | elnnuz 9523 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
43 | 42 | biimpi 119 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
(ℤ≥‘1)) |
44 | 43 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈
(ℤ≥‘1)) |
45 | 21 | adantll 473 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑥) ∈ ℂ) |
46 | 22 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
47 | 44, 45, 46 | seq3p1 10418 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ ×
{𝐴}))‘𝑘) · ((ℕ ×
{𝐴})‘(𝑘 + 1)))) |
48 | 35 | peano2nnd 8893 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (𝑘 + 1) ∈ ℕ) |
49 | | fvconst2g 5710 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) →
((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴) |
50 | 15, 48, 49 | syl2an2 589 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴) |
51 | 50 | oveq2d 5869 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · ,
(ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( · , (ℕ ×
{𝐴}))‘𝑘) · 𝐴)) |
52 | 47, 51 | eqtrd 2203 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ ×
{𝐴}))‘𝑘) · 𝐴)) |
53 | 52 | breq1d 3999 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ
× {𝐴}))‘𝑘) · 𝐴) # 0)) |
54 | 53 | adantr 274 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → ((seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ
× {𝐴}))‘𝑘) · 𝐴) # 0)) |
55 | 41, 54 | mpbird 166 |
. . . . 5
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0) |
56 | 55 | exp31 362 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝜑 → ((seq1( · ,
(ℕ × {𝐴}))‘𝑘) # 0 → (seq1( · , (ℕ
× {𝐴}))‘(𝑘 + 1)) # 0))) |
57 | 56 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘(𝑘 + 1)) # 0))) |
58 | 4, 7, 10, 13, 30, 57 | nnind 8894 |
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘𝑁) # 0)) |
59 | 1, 58 | mpcom 36 |
1
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘𝑁) # 0) |