| Step | Hyp | Ref
| Expression |
| 1 | | exp3vallem.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = 1 → (seq1( · ,
(ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘1)) |
| 3 | 2 | breq1d 4044 |
. . . 4
⊢ (𝑤 = 1 → ((seq1( · ,
(ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ
× {𝐴}))‘1) #
0)) |
| 4 | 3 | imbi2d 230 |
. . 3
⊢ (𝑤 = 1 → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘1) #
0))) |
| 5 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = 𝑘 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) = (seq1( · , (ℕ
× {𝐴}))‘𝑘)) |
| 6 | 5 | breq1d 4044 |
. . . 4
⊢ (𝑤 = 𝑘 → ((seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0 ↔ (seq1( · ,
(ℕ × {𝐴}))‘𝑘) # 0)) |
| 7 | 6 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑘) # 0))) |
| 8 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (seq1( · , (ℕ
× {𝐴}))‘𝑤) = (seq1( · , (ℕ
× {𝐴}))‘(𝑘 + 1))) |
| 9 | 8 | breq1d 4044 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((seq1( · , (ℕ
× {𝐴}))‘𝑤) # 0 ↔ (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0)) |
| 10 | 9 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘(𝑘 + 1)) # 0))) |
| 11 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) = (seq1( · , (ℕ
× {𝐴}))‘𝑁)) |
| 12 | 11 | breq1d 4044 |
. . . 4
⊢ (𝑤 = 𝑁 → ((seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0 ↔ (seq1( · ,
(ℕ × {𝐴}))‘𝑁) # 0)) |
| 13 | 12 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘𝑁) # 0))) |
| 14 | | 1zzd 9370 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
| 15 | | exp3vallem.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 16 | | elnnuz 9655 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ ↔ 𝑥 ∈
(ℤ≥‘1)) |
| 17 | 16 | biimpri 133 |
. . . . . . . 8
⊢ (𝑥 ∈
(ℤ≥‘1) → 𝑥 ∈ ℕ) |
| 18 | | fvconst2g 5779 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) →
((ℕ × {𝐴})‘𝑥) = 𝐴) |
| 19 | 15, 17, 18 | syl2an 289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑥) = 𝐴) |
| 20 | 15 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ 𝐴 ∈
ℂ) |
| 21 | 19, 20 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑥) ∈ ℂ) |
| 22 | | mulcl 8023 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 23 | 22 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 24 | 14, 21, 23 | seq3-1 10571 |
. . . . 5
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘1) =
((ℕ × {𝐴})‘1)) |
| 25 | | 1nn 9018 |
. . . . . 6
⊢ 1 ∈
ℕ |
| 26 | | fvconst2g 5779 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) |
| 27 | 15, 25, 26 | sylancl 413 |
. . . . 5
⊢ (𝜑 → ((ℕ × {𝐴})‘1) = 𝐴) |
| 28 | 24, 27 | eqtrd 2229 |
. . . 4
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘1) =
𝐴) |
| 29 | | exp3vallem.ap |
. . . 4
⊢ (𝜑 → 𝐴 # 0) |
| 30 | 28, 29 | eqbrtrd 4056 |
. . 3
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘1) #
0) |
| 31 | | nnuz 9654 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 32 | 16, 21 | sylan2b 287 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝐴})‘𝑥) ∈
ℂ) |
| 33 | 31, 14, 32, 23 | seqf 10573 |
. . . . . . . . . 10
⊢ (𝜑 → seq1( · , (ℕ
× {𝐴})):ℕ⟶ℂ) |
| 34 | 33 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → seq1( · , (ℕ
× {𝐴})):ℕ⟶ℂ) |
| 35 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ) |
| 36 | 34, 35 | ffvelcdmd 5701 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · ,
(ℕ × {𝐴}))‘𝑘) ∈ ℂ) |
| 37 | 36 | adantr 276 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (seq1( · ,
(ℕ × {𝐴}))‘𝑘) ∈ ℂ) |
| 38 | 15 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → 𝐴 ∈ ℂ) |
| 39 | | simpr 110 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (seq1( · ,
(ℕ × {𝐴}))‘𝑘) # 0) |
| 40 | 29 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → 𝐴 # 0) |
| 41 | 37, 38, 39, 40 | mulap0d 8702 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → ((seq1( · ,
(ℕ × {𝐴}))‘𝑘) · 𝐴) # 0) |
| 42 | | elnnuz 9655 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
| 43 | 42 | biimpi 120 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
(ℤ≥‘1)) |
| 44 | 43 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈
(ℤ≥‘1)) |
| 45 | 21 | adantll 476 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑥) ∈ ℂ) |
| 46 | 22 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 47 | 44, 45, 46 | seq3p1 10574 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ ×
{𝐴}))‘𝑘) · ((ℕ ×
{𝐴})‘(𝑘 + 1)))) |
| 48 | 35 | peano2nnd 9022 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (𝑘 + 1) ∈ ℕ) |
| 49 | | fvconst2g 5779 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) →
((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴) |
| 50 | 15, 48, 49 | syl2an2 594 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴) |
| 51 | 50 | oveq2d 5941 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · ,
(ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( · , (ℕ ×
{𝐴}))‘𝑘) · 𝐴)) |
| 52 | 47, 51 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ ×
{𝐴}))‘𝑘) · 𝐴)) |
| 53 | 52 | breq1d 4044 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ
× {𝐴}))‘𝑘) · 𝐴) # 0)) |
| 54 | 53 | adantr 276 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → ((seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ
× {𝐴}))‘𝑘) · 𝐴) # 0)) |
| 55 | 41, 54 | mpbird 167 |
. . . . 5
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (seq1( · ,
(ℕ × {𝐴}))‘(𝑘 + 1)) # 0) |
| 56 | 55 | exp31 364 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝜑 → ((seq1( · ,
(ℕ × {𝐴}))‘𝑘) # 0 → (seq1( · , (ℕ
× {𝐴}))‘(𝑘 + 1)) # 0))) |
| 57 | 56 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , (ℕ
× {𝐴}))‘𝑘) # 0) → (𝜑 → (seq1( · , (ℕ ×
{𝐴}))‘(𝑘 + 1)) # 0))) |
| 58 | 4, 7, 10, 13, 30, 57 | nnind 9023 |
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘𝑁) # 0)) |
| 59 | 1, 58 | mpcom 36 |
1
⊢ (𝜑 → (seq1( · , (ℕ
× {𝐴}))‘𝑁) # 0) |