ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem GIF version

Theorem exp3vallem 10649
Description: Lemma for exp3val 10650. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a (𝜑𝐴 ∈ ℂ)
exp3vallem.ap (𝜑𝐴 # 0)
exp3vallem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exp3vallem (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)

Proof of Theorem exp3vallem
Dummy variables 𝑘 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5561 . . . . 5 (𝑤 = 1 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘1))
32breq1d 4044 . . . 4 (𝑤 = 1 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘1) # 0))
43imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)))
5 fveq2 5561 . . . . 5 (𝑤 = 𝑘 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑘))
65breq1d 4044 . . . 4 (𝑤 = 𝑘 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0))
76imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)))
8 fveq2 5561 . . . . 5 (𝑤 = (𝑘 + 1) → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)))
98breq1d 4044 . . . 4 (𝑤 = (𝑘 + 1) → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0))
109imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
11 fveq2 5561 . . . . 5 (𝑤 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1211breq1d 4044 . . . 4 (𝑤 = 𝑁 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
1312imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)))
14 1zzd 9370 . . . . . 6 (𝜑 → 1 ∈ ℤ)
15 exp3vallem.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
16 elnnuz 9655 . . . . . . . . 9 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
1716biimpri 133 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
18 fvconst2g 5779 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
1915, 17, 18syl2an 289 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
2015adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
2119, 20eqeltrd 2273 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
22 mulcl 8023 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 277 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
2414, 21, 23seq3-1 10571 . . . . 5 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
25 1nn 9018 . . . . . 6 1 ∈ ℕ
26 fvconst2g 5779 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2715, 25, 26sylancl 413 . . . . 5 (𝜑 → ((ℕ × {𝐴})‘1) = 𝐴)
2824, 27eqtrd 2229 . . . 4 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = 𝐴)
29 exp3vallem.ap . . . 4 (𝜑𝐴 # 0)
3028, 29eqbrtrd 4056 . . 3 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)
31 nnuz 9654 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3216, 21sylan2b 287 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
3331, 14, 32, 23seqf 10573 . . . . . . . . . 10 (𝜑 → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
3433adantl 277 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
35 simpl 109 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
3634, 35ffvelcdmd 5701 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3736adantr 276 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3815ad2antlr 489 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 ∈ ℂ)
39 simpr 110 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)
4029ad2antlr 489 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 # 0)
4137, 38, 39, 40mulap0d 8702 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0)
42 elnnuz 9655 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
4342biimpi 120 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
4443adantr 276 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ (ℤ‘1))
4521adantll 476 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
4622adantl 277 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
4744, 45, 46seq3p1 10574 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))))
4835peano2nnd 9022 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝜑) → (𝑘 + 1) ∈ ℕ)
49 fvconst2g 5779 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5015, 48, 49syl2an2 594 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5150oveq2d 5941 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5247, 51eqtrd 2229 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5352breq1d 4044 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5453adantr 276 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5541, 54mpbird 167 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)
5655exp31 364 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , (ℕ × {𝐴}))‘𝑘) # 0 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
5756a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
584, 7, 10, 13, 30, 57nnind 9023 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
591, 58mpcom 36 1 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {csn 3623   class class class wbr 4034   × cxp 4662  wf 5255  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   # cap 8625  cn 9007  cuz 9618  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557
This theorem is referenced by:  exp3val  10650
  Copyright terms: Public domain W3C validator