ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem GIF version

Theorem exp3vallem 10729
Description: Lemma for exp3val 10730. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a (𝜑𝐴 ∈ ℂ)
exp3vallem.ap (𝜑𝐴 # 0)
exp3vallem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exp3vallem (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)

Proof of Theorem exp3vallem
Dummy variables 𝑘 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5603 . . . . 5 (𝑤 = 1 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘1))
32breq1d 4072 . . . 4 (𝑤 = 1 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘1) # 0))
43imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)))
5 fveq2 5603 . . . . 5 (𝑤 = 𝑘 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑘))
65breq1d 4072 . . . 4 (𝑤 = 𝑘 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0))
76imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)))
8 fveq2 5603 . . . . 5 (𝑤 = (𝑘 + 1) → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)))
98breq1d 4072 . . . 4 (𝑤 = (𝑘 + 1) → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0))
109imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
11 fveq2 5603 . . . . 5 (𝑤 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1211breq1d 4072 . . . 4 (𝑤 = 𝑁 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
1312imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)))
14 1zzd 9441 . . . . . 6 (𝜑 → 1 ∈ ℤ)
15 exp3vallem.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
16 elnnuz 9727 . . . . . . . . 9 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
1716biimpri 133 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
18 fvconst2g 5826 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
1915, 17, 18syl2an 289 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
2015adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
2119, 20eqeltrd 2286 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
22 mulcl 8094 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 277 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
2414, 21, 23seq3-1 10651 . . . . 5 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
25 1nn 9089 . . . . . 6 1 ∈ ℕ
26 fvconst2g 5826 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2715, 25, 26sylancl 413 . . . . 5 (𝜑 → ((ℕ × {𝐴})‘1) = 𝐴)
2824, 27eqtrd 2242 . . . 4 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = 𝐴)
29 exp3vallem.ap . . . 4 (𝜑𝐴 # 0)
3028, 29eqbrtrd 4084 . . 3 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)
31 nnuz 9726 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3216, 21sylan2b 287 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
3331, 14, 32, 23seqf 10653 . . . . . . . . . 10 (𝜑 → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
3433adantl 277 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
35 simpl 109 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
3634, 35ffvelcdmd 5744 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3736adantr 276 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3815ad2antlr 489 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 ∈ ℂ)
39 simpr 110 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)
4029ad2antlr 489 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 # 0)
4137, 38, 39, 40mulap0d 8773 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0)
42 elnnuz 9727 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
4342biimpi 120 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
4443adantr 276 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ (ℤ‘1))
4521adantll 476 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
4622adantl 277 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
4744, 45, 46seq3p1 10654 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))))
4835peano2nnd 9093 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝜑) → (𝑘 + 1) ∈ ℕ)
49 fvconst2g 5826 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5015, 48, 49syl2an2 596 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5150oveq2d 5990 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5247, 51eqtrd 2242 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5352breq1d 4072 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5453adantr 276 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5541, 54mpbird 167 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)
5655exp31 364 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , (ℕ × {𝐴}))‘𝑘) # 0 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
5756a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
584, 7, 10, 13, 30, 57nnind 9094 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
591, 58mpcom 36 1 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  {csn 3646   class class class wbr 4062   × cxp 4694  wf 5290  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   # cap 8696  cn 9078  cuz 9690  seqcseq 10636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-seqfrec 10637
This theorem is referenced by:  exp3val  10730
  Copyright terms: Public domain W3C validator