ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem GIF version

Theorem exp3vallem 9956
Description: Lemma for exp3val 9957. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a (𝜑𝐴 ∈ ℂ)
exp3vallem.ap (𝜑𝐴 # 0)
exp3vallem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exp3vallem (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)

Proof of Theorem exp3vallem
Dummy variables 𝑘 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5305 . . . . 5 (𝑤 = 1 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘1))
32breq1d 3855 . . . 4 (𝑤 = 1 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘1) # 0))
43imbi2d 228 . . 3 (𝑤 = 1 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)))
5 fveq2 5305 . . . . 5 (𝑤 = 𝑘 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑘))
65breq1d 3855 . . . 4 (𝑤 = 𝑘 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0))
76imbi2d 228 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)))
8 fveq2 5305 . . . . 5 (𝑤 = (𝑘 + 1) → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)))
98breq1d 3855 . . . 4 (𝑤 = (𝑘 + 1) → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0))
109imbi2d 228 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
11 fveq2 5305 . . . . 5 (𝑤 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1211breq1d 3855 . . . 4 (𝑤 = 𝑁 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
1312imbi2d 228 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)))
14 1zzd 8777 . . . . . 6 (𝜑 → 1 ∈ ℤ)
15 exp3vallem.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
16 elnnuz 9055 . . . . . . . . 9 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
1716biimpri 131 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
18 fvconst2g 5511 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
1915, 17, 18syl2an 283 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
2015adantr 270 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
2119, 20eqeltrd 2164 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
22 mulcl 7469 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 271 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
2414, 21, 23seq3-1 9877 . . . . 5 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
25 1nn 8433 . . . . . 6 1 ∈ ℕ
26 fvconst2g 5511 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2715, 25, 26sylancl 404 . . . . 5 (𝜑 → ((ℕ × {𝐴})‘1) = 𝐴)
2824, 27eqtrd 2120 . . . 4 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = 𝐴)
29 exp3vallem.ap . . . 4 (𝜑𝐴 # 0)
3028, 29eqbrtrd 3865 . . 3 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)
31 nnuz 9054 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3216, 21sylan2b 281 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
3331, 14, 32, 23seqf 9880 . . . . . . . . . 10 (𝜑 → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
3433adantl 271 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
35 simpl 107 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
3634, 35ffvelrnd 5435 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3736adantr 270 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3815ad2antlr 473 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 ∈ ℂ)
39 simpr 108 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)
4029ad2antlr 473 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 # 0)
4137, 38, 39, 40mulap0d 8127 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0)
42 elnnuz 9055 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
4342biimpi 118 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
4443adantr 270 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ (ℤ‘1))
4521adantll 460 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
4622adantl 271 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
4744, 45, 46seq3p1 9884 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))))
4835peano2nnd 8437 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝜑) → (𝑘 + 1) ∈ ℕ)
49 fvconst2g 5511 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5015, 48, 49syl2an2 561 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5150oveq2d 5668 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5247, 51eqtrd 2120 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5352breq1d 3855 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5453adantr 270 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5541, 54mpbird 165 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)
5655exp31 356 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , (ℕ × {𝐴}))‘𝑘) # 0 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
5756a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
584, 7, 10, 13, 30, 57nnind 8438 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
591, 58mpcom 36 1 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  {csn 3446   class class class wbr 3845   × cxp 4436  wf 5011  cfv 5015  (class class class)co 5652  cc 7348  0cc0 7350  1c1 7351   + caddc 7353   · cmul 7355   # cap 8058  cn 8422  cuz 9019  seqcseq 9852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-iseq 9853  df-seq3 9854
This theorem is referenced by:  exp3val  9957
  Copyright terms: Public domain W3C validator