ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem GIF version

Theorem exp3vallem 10692
Description: Lemma for exp3val 10693. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a (𝜑𝐴 ∈ ℂ)
exp3vallem.ap (𝜑𝐴 # 0)
exp3vallem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
exp3vallem (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)

Proof of Theorem exp3vallem
Dummy variables 𝑘 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5583 . . . . 5 (𝑤 = 1 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘1))
32breq1d 4057 . . . 4 (𝑤 = 1 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘1) # 0))
43imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)))
5 fveq2 5583 . . . . 5 (𝑤 = 𝑘 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑘))
65breq1d 4057 . . . 4 (𝑤 = 𝑘 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0))
76imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)))
8 fveq2 5583 . . . . 5 (𝑤 = (𝑘 + 1) → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)))
98breq1d 4057 . . . 4 (𝑤 = (𝑘 + 1) → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0))
109imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
11 fveq2 5583 . . . . 5 (𝑤 = 𝑁 → (seq1( · , (ℕ × {𝐴}))‘𝑤) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1211breq1d 4057 . . . 4 (𝑤 = 𝑁 → ((seq1( · , (ℕ × {𝐴}))‘𝑤) # 0 ↔ (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
1312imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑤) # 0) ↔ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)))
14 1zzd 9406 . . . . . 6 (𝜑 → 1 ∈ ℤ)
15 exp3vallem.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
16 elnnuz 9692 . . . . . . . . 9 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
1716biimpri 133 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
18 fvconst2g 5805 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
1915, 17, 18syl2an 289 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
2015adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
2119, 20eqeltrd 2283 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
22 mulcl 8059 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 277 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
2414, 21, 23seq3-1 10614 . . . . 5 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
25 1nn 9054 . . . . . 6 1 ∈ ℕ
26 fvconst2g 5805 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2715, 25, 26sylancl 413 . . . . 5 (𝜑 → ((ℕ × {𝐴})‘1) = 𝐴)
2824, 27eqtrd 2239 . . . 4 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) = 𝐴)
29 exp3vallem.ap . . . 4 (𝜑𝐴 # 0)
3028, 29eqbrtrd 4069 . . 3 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘1) # 0)
31 nnuz 9691 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3216, 21sylan2b 287 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
3331, 14, 32, 23seqf 10616 . . . . . . . . . 10 (𝜑 → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
3433adantl 277 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → seq1( · , (ℕ × {𝐴})):ℕ⟶ℂ)
35 simpl 109 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
3634, 35ffvelcdmd 5723 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3736adantr 276 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) ∈ ℂ)
3815ad2antlr 489 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 ∈ ℂ)
39 simpr 110 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0)
4029ad2antlr 489 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → 𝐴 # 0)
4137, 38, 39, 40mulap0d 8738 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0)
42 elnnuz 9692 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
4342biimpi 120 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
4443adantr 276 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ (ℤ‘1))
4521adantll 476 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
4622adantl 277 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
4744, 45, 46seq3p1 10617 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))))
4835peano2nnd 9058 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝜑) → (𝑘 + 1) ∈ ℕ)
49 fvconst2g 5805 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5015, 48, 49syl2an2 594 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝜑) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
5150oveq2d 5967 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘𝑘) · ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5247, 51eqtrd 2239 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝜑) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴))
5352breq1d 4057 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5453adantr 276 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → ((seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0 ↔ ((seq1( · , (ℕ × {𝐴}))‘𝑘) · 𝐴) # 0))
5541, 54mpbird 167 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)
5655exp31 364 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , (ℕ × {𝐴}))‘𝑘) # 0 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
5756a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑘) # 0) → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘(𝑘 + 1)) # 0)))
584, 7, 10, 13, 30, 57nnind 9059 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0))
591, 58mpcom 36 1 (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {csn 3634   class class class wbr 4047   × cxp 4677  wf 5272  cfv 5276  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   # cap 8661  cn 9043  cuz 9655  seqcseq 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-seqfrec 10600
This theorem is referenced by:  exp3val  10693
  Copyright terms: Public domain W3C validator