ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg2 GIF version

Theorem fsum3cvg2 11559
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumsers.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumsers.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumsers.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsers.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumsers.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fsum3cvg2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsum3cvg2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2339 . . . 4 𝑚if(𝑘𝐴, 𝐵, 0)
2 nfv 1542 . . . . 5 𝑘 𝑚𝐴
3 nfcsb1v 3117 . . . . 5 𝑘𝑚 / 𝑘𝐵
4 nfcv 2339 . . . . 5 𝑘0
52, 3, 4nfif 3589 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0)
6 eleq1w 2257 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
7 csbeq1a 3093 . . . . 5 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
86, 7ifbieq1d 3583 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
91, 5, 8cbvmpt 4128 . . 3 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑚 ∈ ℤ ↦ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
10 fsumsers.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1110ralrimiva 2570 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
123nfel1 2350 . . . . 5 𝑘𝑚 / 𝑘𝐵 ∈ ℂ
137eleq1d 2265 . . . . 5 (𝑘 = 𝑚 → (𝐵 ∈ ℂ ↔ 𝑚 / 𝑘𝐵 ∈ ℂ))
1412, 13rspc 2862 . . . 4 (𝑚𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑚 / 𝑘𝐵 ∈ ℂ))
1511, 14mpan9 281 . . 3 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
166dcbid 839 . . . 4 (𝑘 = 𝑚 → (DECID 𝑘𝐴DECID 𝑚𝐴))
17 fsumsers.dc . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1817ralrimiva 2570 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
1918adantr 276 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
20 simpr 110 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
2116, 19, 20rspcdva 2873 . . 3 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
22 fsumsers.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
23 fsumsers.4 . . 3 (𝜑𝐴 ⊆ (𝑀...𝑁))
249, 15, 21, 22, 23fsum3cvg 11543 . 2 (𝜑 → seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))) ⇝ (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
25 eluzel2 9606 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2622, 25syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
27 fveq2 5558 . . . . 5 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2827eleq1d 2265 . . . 4 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
29 fsumsers.1 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
3010adantlr 477 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
31 0cnd 8019 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
3230, 31, 17ifcldadc 3590 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
3329, 32eqeltrd 2273 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3433ralrimiva 2570 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3534adantr 276 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
36 simpr 110 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3728, 35, 36rspcdva 2873 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
38 eluzelz 9610 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
39 eqid 2196 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
4039fvmpt2 5645 . . . . . . 7 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4138, 32, 40syl2an2 594 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4229, 41eqtr4d 2232 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
4342ralrimiva 2570 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
44 nffvmpt1 5569 . . . . . 6 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
4544nfeq2 2351 . . . . 5 𝑘(𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
46 fveq2 5558 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
47 fveq2 5558 . . . . . 6 (𝑘 = 𝑛 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
4846, 47eqeq12d 2211 . . . . 5 (𝑘 = 𝑛 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) ↔ (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
4945, 48rspc 2862 . . . 4 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
5043, 49mpan9 281 . . 3 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
51 addcl 8004 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5251adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5326, 37, 50, 52seq3feq 10572 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))))
5453fveq1d 5560 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
5524, 53, 543brtr4d 4065 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  csb 3084  wss 3157  ifcif 3561   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   + caddc 7882  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539  cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-fz 10084  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  fsumsersdc  11560  fsum3cvg3  11561  ef0lem  11825
  Copyright terms: Public domain W3C validator