ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg2 GIF version

Theorem fsum3cvg2 11195
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumsers.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumsers.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumsers.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsers.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumsers.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fsum3cvg2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsum3cvg2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2282 . . . 4 𝑚if(𝑘𝐴, 𝐵, 0)
2 nfv 1509 . . . . 5 𝑘 𝑚𝐴
3 nfcsb1v 3040 . . . . 5 𝑘𝑚 / 𝑘𝐵
4 nfcv 2282 . . . . 5 𝑘0
52, 3, 4nfif 3505 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0)
6 eleq1w 2201 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
7 csbeq1a 3016 . . . . 5 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
86, 7ifbieq1d 3499 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
91, 5, 8cbvmpt 4031 . . 3 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑚 ∈ ℤ ↦ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
10 fsumsers.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1110ralrimiva 2508 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
123nfel1 2293 . . . . 5 𝑘𝑚 / 𝑘𝐵 ∈ ℂ
137eleq1d 2209 . . . . 5 (𝑘 = 𝑚 → (𝐵 ∈ ℂ ↔ 𝑚 / 𝑘𝐵 ∈ ℂ))
1412, 13rspc 2787 . . . 4 (𝑚𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑚 / 𝑘𝐵 ∈ ℂ))
1511, 14mpan9 279 . . 3 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
166dcbid 824 . . . 4 (𝑘 = 𝑚 → (DECID 𝑘𝐴DECID 𝑚𝐴))
17 fsumsers.dc . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1817ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
1918adantr 274 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
20 simpr 109 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
2116, 19, 20rspcdva 2798 . . 3 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
22 fsumsers.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
23 fsumsers.4 . . 3 (𝜑𝐴 ⊆ (𝑀...𝑁))
249, 15, 21, 22, 23fsum3cvg 11179 . 2 (𝜑 → seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))) ⇝ (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
25 eluzel2 9355 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2622, 25syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
27 fveq2 5429 . . . . 5 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2827eleq1d 2209 . . . 4 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
29 fsumsers.1 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
3010adantlr 469 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
31 0cnd 7783 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
3230, 31, 17ifcldadc 3506 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
3329, 32eqeltrd 2217 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3433ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3534adantr 274 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
36 simpr 109 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3728, 35, 36rspcdva 2798 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
38 eluzelz 9359 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
39 eqid 2140 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
4039fvmpt2 5512 . . . . . . 7 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4138, 32, 40syl2an2 584 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4229, 41eqtr4d 2176 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
4342ralrimiva 2508 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
44 nffvmpt1 5440 . . . . . 6 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
4544nfeq2 2294 . . . . 5 𝑘(𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
46 fveq2 5429 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
47 fveq2 5429 . . . . . 6 (𝑘 = 𝑛 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
4846, 47eqeq12d 2155 . . . . 5 (𝑘 = 𝑛 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) ↔ (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
4945, 48rspc 2787 . . . 4 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
5043, 49mpan9 279 . . 3 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
51 addcl 7769 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5251adantl 275 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5326, 37, 50, 52seq3feq 10276 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))))
5453fveq1d 5431 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
5524, 53, 543brtr4d 3968 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 820   = wceq 1332  wcel 1481  wral 2417  csb 3007  wss 3076  ifcif 3479   class class class wbr 3937  cmpt 3997  cfv 5131  (class class class)co 5782  cc 7642  0cc0 7644   + caddc 7647  cz 9078  cuz 9350  ...cfz 9821  seqcseq 10249  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-fz 9822  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  fsumsersdc  11196  fsum3cvg3  11197  ef0lem  11403
  Copyright terms: Public domain W3C validator