ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg2 GIF version

Theorem fsum3cvg2 10850
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumsers.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumsers.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumsers.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsers.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumsers.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fsum3cvg2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsum3cvg2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2229 . . . 4 𝑚if(𝑘𝐴, 𝐵, 0)
2 nfv 1467 . . . . 5 𝑘 𝑚𝐴
3 nfcsb1v 2966 . . . . 5 𝑘𝑚 / 𝑘𝐵
4 nfcv 2229 . . . . 5 𝑘0
52, 3, 4nfif 3425 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0)
6 eleq1w 2149 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
7 csbeq1a 2944 . . . . 5 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
86, 7ifbieq1d 3419 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
91, 5, 8cbvmpt 3941 . . 3 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑚 ∈ ℤ ↦ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
10 fsumsers.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1110ralrimiva 2447 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
123nfel1 2240 . . . . 5 𝑘𝑚 / 𝑘𝐵 ∈ ℂ
137eleq1d 2157 . . . . 5 (𝑘 = 𝑚 → (𝐵 ∈ ℂ ↔ 𝑚 / 𝑘𝐵 ∈ ℂ))
1412, 13rspc 2719 . . . 4 (𝑚𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑚 / 𝑘𝐵 ∈ ℂ))
1511, 14mpan9 276 . . 3 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
166dcbid 787 . . . 4 (𝑘 = 𝑚 → (DECID 𝑘𝐴DECID 𝑚𝐴))
17 fsumsers.dc . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1817ralrimiva 2447 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
1918adantr 271 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
20 simpr 109 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
2116, 19, 20rspcdva 2730 . . 3 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
22 fsumsers.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
23 fsumsers.4 . . 3 (𝜑𝐴 ⊆ (𝑀...𝑁))
249, 15, 21, 22, 23fsum3cvg 10830 . 2 (𝜑 → seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))) ⇝ (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
25 eluzel2 9087 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2622, 25syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
27 fveq2 5320 . . . . 5 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2827eleq1d 2157 . . . 4 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
29 fsumsers.1 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
3010adantlr 462 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
31 0cnd 7544 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
3230, 31, 17ifcldadc 3426 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
3329, 32eqeltrd 2165 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3433ralrimiva 2447 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3534adantr 271 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
36 simpr 109 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3728, 35, 36rspcdva 2730 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
38 eluzelz 9091 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
39 eqid 2089 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
4039fvmpt2 5401 . . . . . . 7 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4138, 32, 40syl2an2 562 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4229, 41eqtr4d 2124 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
4342ralrimiva 2447 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
44 nffvmpt1 5331 . . . . . 6 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
4544nfeq2 2241 . . . . 5 𝑘(𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
46 fveq2 5320 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
47 fveq2 5320 . . . . . 6 (𝑘 = 𝑛 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
4846, 47eqeq12d 2103 . . . . 5 (𝑘 = 𝑛 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) ↔ (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
4945, 48rspc 2719 . . . 4 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
5043, 49mpan9 276 . . 3 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
51 addcl 7530 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5251adantl 272 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5326, 37, 50, 52seq3feq 9960 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))))
5453fveq1d 5322 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
5524, 53, 543brtr4d 3883 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 781   = wceq 1290  wcel 1439  wral 2360  csb 2936  wss 3002  ifcif 3399   class class class wbr 3853  cmpt 3907  cfv 5030  (class class class)co 5668  cc 7411  0cc0 7413   + caddc 7416  cz 8813  cuz 9082  ...cfz 9487  seqcseq 9915  cli 10729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525  ax-pre-mulext 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-if 3400  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-ilim 4207  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-frec 6172  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122  df-div 8203  df-inn 8486  df-2 8544  df-n0 8737  df-z 8814  df-uz 9083  df-rp 9198  df-fz 9488  df-iseq 9916  df-seq3 9917  df-exp 10018  df-cj 10339  df-rsqrt 10494  df-abs 10495  df-clim 10730
This theorem is referenced by:  fsum3cvg3  10852  ef0lem  11013
  Copyright terms: Public domain W3C validator