ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemrprm GIF version

Theorem eulerthlemrprm 12367
Description: Lemma for eulerth 12371. 𝑁 and 𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemrprm (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
Distinct variable groups:   𝑥,𝐹   𝑦,𝐹   𝑥,𝑁   𝑦,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem eulerthlemrprm
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp1d 1011 . . . . 5 (𝜑𝑁 ∈ ℕ)
32phicld 12356 . . . 4 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
4 elnnuz 9629 . . . 4 ((ϕ‘𝑁) ∈ ℕ ↔ (ϕ‘𝑁) ∈ (ℤ‘1))
53, 4sylib 122 . . 3 (𝜑 → (ϕ‘𝑁) ∈ (ℤ‘1))
6 eluzfz2 10098 . . 3 ((ϕ‘𝑁) ∈ (ℤ‘1) → (ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)))
75, 6syl 14 . 2 (𝜑 → (ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)))
8 oveq2 5926 . . . . . . 7 (𝑤 = 1 → (1...𝑤) = (1...1))
98prodeq1d 11707 . . . . . 6 (𝑤 = 1 → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...1)(𝐹𝑥))
109oveq2d 5934 . . . . 5 (𝑤 = 1 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)))
1110eqeq1d 2202 . . . 4 (𝑤 = 1 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1))
1211imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1)))
13 oveq2 5926 . . . . . . 7 (𝑤 = 𝑘 → (1...𝑤) = (1...𝑘))
1413prodeq1d 11707 . . . . . 6 (𝑤 = 𝑘 → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...𝑘)(𝐹𝑥))
1514oveq2d 5934 . . . . 5 (𝑤 = 𝑘 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)))
1615eqeq1d 2202 . . . 4 (𝑤 = 𝑘 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1))
1716imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1)))
18 oveq2 5926 . . . . . . 7 (𝑤 = (𝑘 + 1) → (1...𝑤) = (1...(𝑘 + 1)))
1918prodeq1d 11707 . . . . . 6 (𝑤 = (𝑘 + 1) → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥))
2019oveq2d 5934 . . . . 5 (𝑤 = (𝑘 + 1) → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)))
2120eqeq1d 2202 . . . 4 (𝑤 = (𝑘 + 1) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
23 oveq2 5926 . . . . . . 7 (𝑤 = (ϕ‘𝑁) → (1...𝑤) = (1...(ϕ‘𝑁)))
2423prodeq1d 11707 . . . . . 6 (𝑤 = (ϕ‘𝑁) → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
2524oveq2d 5934 . . . . 5 (𝑤 = (ϕ‘𝑁) → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
2625eqeq1d 2202 . . . 4 (𝑤 = (ϕ‘𝑁) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1))
2726imbi2d 230 . . 3 (𝑤 = (ϕ‘𝑁) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)))
28 1z 9343 . . . . . . 7 1 ∈ ℤ
29 eulerth.2 . . . . . . . . . . 11 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
30 ssrab2 3264 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
3129, 30eqsstri 3211 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
32 fzo0ssnn0 10282 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
3331, 32sstri 3188 . . . . . . . . 9 𝑆 ⊆ ℕ0
34 nn0sscn 9245 . . . . . . . . 9 0 ⊆ ℂ
3533, 34sstri 3188 . . . . . . . 8 𝑆 ⊆ ℂ
36 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
37 f1of 5500 . . . . . . . . . 10 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
3836, 37syl 14 . . . . . . . . 9 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
393nnge1d 9025 . . . . . . . . . 10 (𝜑 → 1 ≤ (ϕ‘𝑁))
40 uzid 9606 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
4128, 40ax-mp 5 . . . . . . . . . . 11 1 ∈ (ℤ‘1)
423nnzd 9438 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
43 elfz5 10083 . . . . . . . . . . 11 ((1 ∈ (ℤ‘1) ∧ (ϕ‘𝑁) ∈ ℤ) → (1 ∈ (1...(ϕ‘𝑁)) ↔ 1 ≤ (ϕ‘𝑁)))
4441, 42, 43sylancr 414 . . . . . . . . . 10 (𝜑 → (1 ∈ (1...(ϕ‘𝑁)) ↔ 1 ≤ (ϕ‘𝑁)))
4539, 44mpbird 167 . . . . . . . . 9 (𝜑 → 1 ∈ (1...(ϕ‘𝑁)))
4638, 45ffvelcdmd 5694 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑆)
4735, 46sselid 3177 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
48 fveq2 5554 . . . . . . . 8 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
4948fprod1 11737 . . . . . . 7 ((1 ∈ ℤ ∧ (𝐹‘1) ∈ ℂ) → ∏𝑥 ∈ (1...1)(𝐹𝑥) = (𝐹‘1))
5028, 47, 49sylancr 414 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...1)(𝐹𝑥) = (𝐹‘1))
5150oveq2d 5934 . . . . 5 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = (𝑁 gcd (𝐹‘1)))
522nnzd 9438 . . . . . 6 (𝜑𝑁 ∈ ℤ)
53 nn0ssz 9335 . . . . . . . 8 0 ⊆ ℤ
5433, 53sstri 3188 . . . . . . 7 𝑆 ⊆ ℤ
5554, 46sselid 3177 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℤ)
56 gcdcom 12110 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐹‘1) ∈ ℤ) → (𝑁 gcd (𝐹‘1)) = ((𝐹‘1) gcd 𝑁))
5752, 55, 56syl2anc 411 . . . . 5 (𝜑 → (𝑁 gcd (𝐹‘1)) = ((𝐹‘1) gcd 𝑁))
58 oveq1 5925 . . . . . . . . 9 (𝑦 = (𝐹‘1) → (𝑦 gcd 𝑁) = ((𝐹‘1) gcd 𝑁))
5958eqeq1d 2202 . . . . . . . 8 (𝑦 = (𝐹‘1) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘1) gcd 𝑁) = 1))
6059, 29elrab2 2919 . . . . . . 7 ((𝐹‘1) ∈ 𝑆 ↔ ((𝐹‘1) ∈ (0..^𝑁) ∧ ((𝐹‘1) gcd 𝑁) = 1))
6146, 60sylib 122 . . . . . 6 (𝜑 → ((𝐹‘1) ∈ (0..^𝑁) ∧ ((𝐹‘1) gcd 𝑁) = 1))
6261simprd 114 . . . . 5 (𝜑 → ((𝐹‘1) gcd 𝑁) = 1)
6351, 57, 623eqtrd 2230 . . . 4 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1)
6463a1i 9 . . 3 ((ϕ‘𝑁) ∈ (ℤ‘1) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1))
65 simpr 110 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1)
6638adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
67 fzofzp1 10294 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁)))
6867adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁)))
6966, 68ffvelcdmd 5694 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
7054, 69sselid 3177 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
7152adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
72 gcdcom 12110 . . . . . . . . . . 11 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = (𝑁 gcd (𝐹‘(𝑘 + 1))))
7370, 71, 72syl2anc 411 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = (𝑁 gcd (𝐹‘(𝑘 + 1))))
74 oveq1 5925 . . . . . . . . . . . . . 14 (𝑦 = (𝐹‘(𝑘 + 1)) → (𝑦 gcd 𝑁) = ((𝐹‘(𝑘 + 1)) gcd 𝑁))
7574eqeq1d 2202 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑘 + 1)) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1))
7675, 29elrab2 2919 . . . . . . . . . . . 12 ((𝐹‘(𝑘 + 1)) ∈ 𝑆 ↔ ((𝐹‘(𝑘 + 1)) ∈ (0..^𝑁) ∧ ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1))
7776simprbi 275 . . . . . . . . . . 11 ((𝐹‘(𝑘 + 1)) ∈ 𝑆 → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1)
7869, 77syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1)
7973, 78eqtr3d 2228 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1)
8079adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1)
8128a1i 9 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 1 ∈ ℤ)
82 elfzoelz 10213 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈ ℤ)
8382adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ ℤ)
8481, 83fzfigd 10502 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (1...𝑘) ∈ Fin)
8538ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
86 elfznn 10120 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℕ)
8786nnred 8995 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℝ)
8887adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ ℝ)
893nnred 8995 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
9089ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℝ)
9182ad2antlr 489 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 ∈ ℤ)
9291zred 9439 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 ∈ ℝ)
93 elfzle2 10094 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑘) → 𝑥𝑘)
9493adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥𝑘)
95 elfzolt2 10223 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 < (ϕ‘𝑁))
9695ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 < (ϕ‘𝑁))
9788, 92, 90, 94, 96lelttrd 8144 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 < (ϕ‘𝑁))
9888, 90, 97ltled 8138 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ≤ (ϕ‘𝑁))
99 elfzuz 10087 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ (ℤ‘1))
10042ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℤ)
101 elfz5 10083 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℤ‘1) ∧ (ϕ‘𝑁) ∈ ℤ) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
10299, 100, 101syl2an2 594 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
10398, 102mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ (1...(ϕ‘𝑁)))
10485, 103ffvelcdmd 5694 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹𝑥) ∈ 𝑆)
10554, 104sselid 3177 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹𝑥) ∈ ℤ)
10684, 105fprodzcl 11752 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)(𝐹𝑥) ∈ ℤ)
107 rpmul 12236 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...𝑘)(𝐹𝑥) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ∈ ℤ) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
10871, 106, 70, 107syl3anc 1249 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
109108adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
11065, 80, 109mp2and 433 . . . . . . 7 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1)
111 elfzouz 10217 . . . . . . . . . . . 12 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈ (ℤ‘1))
112111adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ (ℤ‘1))
11338ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
114 elfzelz 10091 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℤ)
115114zred 9439 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℝ)
116115adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ ℝ)
11782ad2antlr 489 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑘 ∈ ℤ)
118117peano2zd 9442 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
119118zred 9439 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
12089ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈ ℝ)
121 elfzle2 10094 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ≤ (𝑘 + 1))
122121adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (𝑘 + 1))
123 elfzle2 10094 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ (1...(ϕ‘𝑁)) → (𝑘 + 1) ≤ (ϕ‘𝑁))
12467, 123syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝑘 + 1) ≤ (ϕ‘𝑁))
125124ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ≤ (ϕ‘𝑁))
126116, 119, 120, 122, 125letrd 8143 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (ϕ‘𝑁))
127 elfzuz 10087 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ (ℤ‘1))
12842ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈ ℤ)
129127, 128, 101syl2an2 594 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
130126, 129mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
131113, 130ffvelcdmd 5694 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹𝑥) ∈ 𝑆)
13235, 131sselid 3177 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹𝑥) ∈ ℂ)
133 fveq2 5554 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
134112, 132, 133fprodp1 11743 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥) = (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1))))
135134oveq2d 5934 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))))
136135eqeq1d 2202 . . . . . . . 8 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1 ↔ (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
137136adantr 276 . . . . . . 7 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → ((𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1 ↔ (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
138110, 137mpbird 167 . . . . . 6 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)
139138ex 115 . . . . 5 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1))
140139expcom 116 . . . 4 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝜑 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
141140a2d 26 . . 3 (𝑘 ∈ (1..^(ϕ‘𝑁)) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
14212, 17, 22, 27, 64, 141fzind2 10306 . 2 ((ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1))
1437, 142mpcom 36 1 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {crab 2476   class class class wbr 4029  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cn 8982  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  ..^cfzo 10208  cprod 11693   gcd cgcd 12079  ϕcphi 12347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-phi 12349
This theorem is referenced by:  eulerthlemth  12370
  Copyright terms: Public domain W3C validator