ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemrprm GIF version

Theorem eulerthlemrprm 12422
Description: Lemma for eulerth 12426. 𝑁 and 𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemrprm (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
Distinct variable groups:   𝑥,𝐹   𝑦,𝐹   𝑥,𝑁   𝑦,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem eulerthlemrprm
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp1d 1011 . . . . 5 (𝜑𝑁 ∈ ℕ)
32phicld 12411 . . . 4 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
4 elnnuz 9655 . . . 4 ((ϕ‘𝑁) ∈ ℕ ↔ (ϕ‘𝑁) ∈ (ℤ‘1))
53, 4sylib 122 . . 3 (𝜑 → (ϕ‘𝑁) ∈ (ℤ‘1))
6 eluzfz2 10124 . . 3 ((ϕ‘𝑁) ∈ (ℤ‘1) → (ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)))
75, 6syl 14 . 2 (𝜑 → (ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)))
8 oveq2 5933 . . . . . . 7 (𝑤 = 1 → (1...𝑤) = (1...1))
98prodeq1d 11746 . . . . . 6 (𝑤 = 1 → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...1)(𝐹𝑥))
109oveq2d 5941 . . . . 5 (𝑤 = 1 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)))
1110eqeq1d 2205 . . . 4 (𝑤 = 1 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1))
1211imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1)))
13 oveq2 5933 . . . . . . 7 (𝑤 = 𝑘 → (1...𝑤) = (1...𝑘))
1413prodeq1d 11746 . . . . . 6 (𝑤 = 𝑘 → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...𝑘)(𝐹𝑥))
1514oveq2d 5941 . . . . 5 (𝑤 = 𝑘 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)))
1615eqeq1d 2205 . . . 4 (𝑤 = 𝑘 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1))
1716imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1)))
18 oveq2 5933 . . . . . . 7 (𝑤 = (𝑘 + 1) → (1...𝑤) = (1...(𝑘 + 1)))
1918prodeq1d 11746 . . . . . 6 (𝑤 = (𝑘 + 1) → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥))
2019oveq2d 5941 . . . . 5 (𝑤 = (𝑘 + 1) → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)))
2120eqeq1d 2205 . . . 4 (𝑤 = (𝑘 + 1) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
23 oveq2 5933 . . . . . . 7 (𝑤 = (ϕ‘𝑁) → (1...𝑤) = (1...(ϕ‘𝑁)))
2423prodeq1d 11746 . . . . . 6 (𝑤 = (ϕ‘𝑁) → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
2524oveq2d 5941 . . . . 5 (𝑤 = (ϕ‘𝑁) → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
2625eqeq1d 2205 . . . 4 (𝑤 = (ϕ‘𝑁) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1))
2726imbi2d 230 . . 3 (𝑤 = (ϕ‘𝑁) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)))
28 1z 9369 . . . . . . 7 1 ∈ ℤ
29 eulerth.2 . . . . . . . . . . 11 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
30 ssrab2 3269 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
3129, 30eqsstri 3216 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
32 fzo0ssnn0 10308 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
3331, 32sstri 3193 . . . . . . . . 9 𝑆 ⊆ ℕ0
34 nn0sscn 9271 . . . . . . . . 9 0 ⊆ ℂ
3533, 34sstri 3193 . . . . . . . 8 𝑆 ⊆ ℂ
36 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
37 f1of 5507 . . . . . . . . . 10 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
3836, 37syl 14 . . . . . . . . 9 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
393nnge1d 9050 . . . . . . . . . 10 (𝜑 → 1 ≤ (ϕ‘𝑁))
40 uzid 9632 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
4128, 40ax-mp 5 . . . . . . . . . . 11 1 ∈ (ℤ‘1)
423nnzd 9464 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
43 elfz5 10109 . . . . . . . . . . 11 ((1 ∈ (ℤ‘1) ∧ (ϕ‘𝑁) ∈ ℤ) → (1 ∈ (1...(ϕ‘𝑁)) ↔ 1 ≤ (ϕ‘𝑁)))
4441, 42, 43sylancr 414 . . . . . . . . . 10 (𝜑 → (1 ∈ (1...(ϕ‘𝑁)) ↔ 1 ≤ (ϕ‘𝑁)))
4539, 44mpbird 167 . . . . . . . . 9 (𝜑 → 1 ∈ (1...(ϕ‘𝑁)))
4638, 45ffvelcdmd 5701 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑆)
4735, 46sselid 3182 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
48 fveq2 5561 . . . . . . . 8 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
4948fprod1 11776 . . . . . . 7 ((1 ∈ ℤ ∧ (𝐹‘1) ∈ ℂ) → ∏𝑥 ∈ (1...1)(𝐹𝑥) = (𝐹‘1))
5028, 47, 49sylancr 414 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...1)(𝐹𝑥) = (𝐹‘1))
5150oveq2d 5941 . . . . 5 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = (𝑁 gcd (𝐹‘1)))
522nnzd 9464 . . . . . 6 (𝜑𝑁 ∈ ℤ)
53 nn0ssz 9361 . . . . . . . 8 0 ⊆ ℤ
5433, 53sstri 3193 . . . . . . 7 𝑆 ⊆ ℤ
5554, 46sselid 3182 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℤ)
56 gcdcom 12165 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐹‘1) ∈ ℤ) → (𝑁 gcd (𝐹‘1)) = ((𝐹‘1) gcd 𝑁))
5752, 55, 56syl2anc 411 . . . . 5 (𝜑 → (𝑁 gcd (𝐹‘1)) = ((𝐹‘1) gcd 𝑁))
58 oveq1 5932 . . . . . . . . 9 (𝑦 = (𝐹‘1) → (𝑦 gcd 𝑁) = ((𝐹‘1) gcd 𝑁))
5958eqeq1d 2205 . . . . . . . 8 (𝑦 = (𝐹‘1) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘1) gcd 𝑁) = 1))
6059, 29elrab2 2923 . . . . . . 7 ((𝐹‘1) ∈ 𝑆 ↔ ((𝐹‘1) ∈ (0..^𝑁) ∧ ((𝐹‘1) gcd 𝑁) = 1))
6146, 60sylib 122 . . . . . 6 (𝜑 → ((𝐹‘1) ∈ (0..^𝑁) ∧ ((𝐹‘1) gcd 𝑁) = 1))
6261simprd 114 . . . . 5 (𝜑 → ((𝐹‘1) gcd 𝑁) = 1)
6351, 57, 623eqtrd 2233 . . . 4 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1)
6463a1i 9 . . 3 ((ϕ‘𝑁) ∈ (ℤ‘1) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1))
65 simpr 110 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1)
6638adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
67 fzofzp1 10320 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁)))
6867adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁)))
6966, 68ffvelcdmd 5701 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
7054, 69sselid 3182 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
7152adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
72 gcdcom 12165 . . . . . . . . . . 11 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = (𝑁 gcd (𝐹‘(𝑘 + 1))))
7370, 71, 72syl2anc 411 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = (𝑁 gcd (𝐹‘(𝑘 + 1))))
74 oveq1 5932 . . . . . . . . . . . . . 14 (𝑦 = (𝐹‘(𝑘 + 1)) → (𝑦 gcd 𝑁) = ((𝐹‘(𝑘 + 1)) gcd 𝑁))
7574eqeq1d 2205 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑘 + 1)) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1))
7675, 29elrab2 2923 . . . . . . . . . . . 12 ((𝐹‘(𝑘 + 1)) ∈ 𝑆 ↔ ((𝐹‘(𝑘 + 1)) ∈ (0..^𝑁) ∧ ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1))
7776simprbi 275 . . . . . . . . . . 11 ((𝐹‘(𝑘 + 1)) ∈ 𝑆 → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1)
7869, 77syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1)
7973, 78eqtr3d 2231 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1)
8079adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1)
8128a1i 9 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 1 ∈ ℤ)
82 elfzoelz 10239 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈ ℤ)
8382adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ ℤ)
8481, 83fzfigd 10540 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (1...𝑘) ∈ Fin)
8538ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
86 elfznn 10146 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℕ)
8786nnred 9020 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℝ)
8887adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ ℝ)
893nnred 9020 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
9089ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℝ)
9182ad2antlr 489 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 ∈ ℤ)
9291zred 9465 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 ∈ ℝ)
93 elfzle2 10120 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑘) → 𝑥𝑘)
9493adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥𝑘)
95 elfzolt2 10249 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 < (ϕ‘𝑁))
9695ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 < (ϕ‘𝑁))
9788, 92, 90, 94, 96lelttrd 8168 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 < (ϕ‘𝑁))
9888, 90, 97ltled 8162 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ≤ (ϕ‘𝑁))
99 elfzuz 10113 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ (ℤ‘1))
10042ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℤ)
101 elfz5 10109 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℤ‘1) ∧ (ϕ‘𝑁) ∈ ℤ) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
10299, 100, 101syl2an2 594 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
10398, 102mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ (1...(ϕ‘𝑁)))
10485, 103ffvelcdmd 5701 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹𝑥) ∈ 𝑆)
10554, 104sselid 3182 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹𝑥) ∈ ℤ)
10684, 105fprodzcl 11791 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)(𝐹𝑥) ∈ ℤ)
107 rpmul 12291 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...𝑘)(𝐹𝑥) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ∈ ℤ) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
10871, 106, 70, 107syl3anc 1249 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
109108adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
11065, 80, 109mp2and 433 . . . . . . 7 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1)
111 elfzouz 10243 . . . . . . . . . . . 12 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈ (ℤ‘1))
112111adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ (ℤ‘1))
11338ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
114 elfzelz 10117 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℤ)
115114zred 9465 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℝ)
116115adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ ℝ)
11782ad2antlr 489 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑘 ∈ ℤ)
118117peano2zd 9468 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
119118zred 9465 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
12089ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈ ℝ)
121 elfzle2 10120 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ≤ (𝑘 + 1))
122121adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (𝑘 + 1))
123 elfzle2 10120 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ (1...(ϕ‘𝑁)) → (𝑘 + 1) ≤ (ϕ‘𝑁))
12467, 123syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝑘 + 1) ≤ (ϕ‘𝑁))
125124ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ≤ (ϕ‘𝑁))
126116, 119, 120, 122, 125letrd 8167 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (ϕ‘𝑁))
127 elfzuz 10113 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ (ℤ‘1))
12842ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈ ℤ)
129127, 128, 101syl2an2 594 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
130126, 129mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
131113, 130ffvelcdmd 5701 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹𝑥) ∈ 𝑆)
13235, 131sselid 3182 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹𝑥) ∈ ℂ)
133 fveq2 5561 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
134112, 132, 133fprodp1 11782 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥) = (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1))))
135134oveq2d 5941 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))))
136135eqeq1d 2205 . . . . . . . 8 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1 ↔ (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
137136adantr 276 . . . . . . 7 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → ((𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1 ↔ (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
138110, 137mpbird 167 . . . . . 6 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)
139138ex 115 . . . . 5 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1))
140139expcom 116 . . . 4 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝜑 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
141140a2d 26 . . 3 (𝑘 ∈ (1..^(ϕ‘𝑁)) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
14212, 17, 22, 27, 64, 141fzind2 10332 . 2 ((ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1))
1437, 142mpcom 36 1 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4034  wf 5255  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cn 9007  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100  ..^cfzo 10234  cprod 11732   gcd cgcd 12145  ϕcphi 12402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-phi 12404
This theorem is referenced by:  eulerthlemth  12425
  Copyright terms: Public domain W3C validator