ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemrprm GIF version

Theorem eulerthlemrprm 12595
Description: Lemma for eulerth 12599. 𝑁 and 𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemrprm (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
Distinct variable groups:   𝑥,𝐹   𝑦,𝐹   𝑥,𝑁   𝑦,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem eulerthlemrprm
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp1d 1012 . . . . 5 (𝜑𝑁 ∈ ℕ)
32phicld 12584 . . . 4 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
4 elnnuz 9692 . . . 4 ((ϕ‘𝑁) ∈ ℕ ↔ (ϕ‘𝑁) ∈ (ℤ‘1))
53, 4sylib 122 . . 3 (𝜑 → (ϕ‘𝑁) ∈ (ℤ‘1))
6 eluzfz2 10161 . . 3 ((ϕ‘𝑁) ∈ (ℤ‘1) → (ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)))
75, 6syl 14 . 2 (𝜑 → (ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)))
8 oveq2 5959 . . . . . . 7 (𝑤 = 1 → (1...𝑤) = (1...1))
98prodeq1d 11919 . . . . . 6 (𝑤 = 1 → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...1)(𝐹𝑥))
109oveq2d 5967 . . . . 5 (𝑤 = 1 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)))
1110eqeq1d 2215 . . . 4 (𝑤 = 1 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1))
1211imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1)))
13 oveq2 5959 . . . . . . 7 (𝑤 = 𝑘 → (1...𝑤) = (1...𝑘))
1413prodeq1d 11919 . . . . . 6 (𝑤 = 𝑘 → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...𝑘)(𝐹𝑥))
1514oveq2d 5967 . . . . 5 (𝑤 = 𝑘 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)))
1615eqeq1d 2215 . . . 4 (𝑤 = 𝑘 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1))
1716imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1)))
18 oveq2 5959 . . . . . . 7 (𝑤 = (𝑘 + 1) → (1...𝑤) = (1...(𝑘 + 1)))
1918prodeq1d 11919 . . . . . 6 (𝑤 = (𝑘 + 1) → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥))
2019oveq2d 5967 . . . . 5 (𝑤 = (𝑘 + 1) → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)))
2120eqeq1d 2215 . . . 4 (𝑤 = (𝑘 + 1) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
23 oveq2 5959 . . . . . . 7 (𝑤 = (ϕ‘𝑁) → (1...𝑤) = (1...(ϕ‘𝑁)))
2423prodeq1d 11919 . . . . . 6 (𝑤 = (ϕ‘𝑁) → ∏𝑥 ∈ (1...𝑤)(𝐹𝑥) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
2524oveq2d 5967 . . . . 5 (𝑤 = (ϕ‘𝑁) → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
2625eqeq1d 2215 . . . 4 (𝑤 = (ϕ‘𝑁) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1 ↔ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1))
2726imbi2d 230 . . 3 (𝑤 = (ϕ‘𝑁) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑤)(𝐹𝑥)) = 1) ↔ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)))
28 1z 9405 . . . . . . 7 1 ∈ ℤ
29 eulerth.2 . . . . . . . . . . 11 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
30 ssrab2 3279 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
3129, 30eqsstri 3226 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
32 fzo0ssnn0 10351 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
3331, 32sstri 3203 . . . . . . . . 9 𝑆 ⊆ ℕ0
34 nn0sscn 9307 . . . . . . . . 9 0 ⊆ ℂ
3533, 34sstri 3203 . . . . . . . 8 𝑆 ⊆ ℂ
36 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
37 f1of 5529 . . . . . . . . . 10 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
3836, 37syl 14 . . . . . . . . 9 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
393nnge1d 9086 . . . . . . . . . 10 (𝜑 → 1 ≤ (ϕ‘𝑁))
40 uzid 9669 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
4128, 40ax-mp 5 . . . . . . . . . . 11 1 ∈ (ℤ‘1)
423nnzd 9501 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
43 elfz5 10146 . . . . . . . . . . 11 ((1 ∈ (ℤ‘1) ∧ (ϕ‘𝑁) ∈ ℤ) → (1 ∈ (1...(ϕ‘𝑁)) ↔ 1 ≤ (ϕ‘𝑁)))
4441, 42, 43sylancr 414 . . . . . . . . . 10 (𝜑 → (1 ∈ (1...(ϕ‘𝑁)) ↔ 1 ≤ (ϕ‘𝑁)))
4539, 44mpbird 167 . . . . . . . . 9 (𝜑 → 1 ∈ (1...(ϕ‘𝑁)))
4638, 45ffvelcdmd 5723 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑆)
4735, 46sselid 3192 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
48 fveq2 5583 . . . . . . . 8 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
4948fprod1 11949 . . . . . . 7 ((1 ∈ ℤ ∧ (𝐹‘1) ∈ ℂ) → ∏𝑥 ∈ (1...1)(𝐹𝑥) = (𝐹‘1))
5028, 47, 49sylancr 414 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...1)(𝐹𝑥) = (𝐹‘1))
5150oveq2d 5967 . . . . 5 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = (𝑁 gcd (𝐹‘1)))
522nnzd 9501 . . . . . 6 (𝜑𝑁 ∈ ℤ)
53 nn0ssz 9397 . . . . . . . 8 0 ⊆ ℤ
5433, 53sstri 3203 . . . . . . 7 𝑆 ⊆ ℤ
5554, 46sselid 3192 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℤ)
56 gcdcom 12338 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐹‘1) ∈ ℤ) → (𝑁 gcd (𝐹‘1)) = ((𝐹‘1) gcd 𝑁))
5752, 55, 56syl2anc 411 . . . . 5 (𝜑 → (𝑁 gcd (𝐹‘1)) = ((𝐹‘1) gcd 𝑁))
58 oveq1 5958 . . . . . . . . 9 (𝑦 = (𝐹‘1) → (𝑦 gcd 𝑁) = ((𝐹‘1) gcd 𝑁))
5958eqeq1d 2215 . . . . . . . 8 (𝑦 = (𝐹‘1) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘1) gcd 𝑁) = 1))
6059, 29elrab2 2933 . . . . . . 7 ((𝐹‘1) ∈ 𝑆 ↔ ((𝐹‘1) ∈ (0..^𝑁) ∧ ((𝐹‘1) gcd 𝑁) = 1))
6146, 60sylib 122 . . . . . 6 (𝜑 → ((𝐹‘1) ∈ (0..^𝑁) ∧ ((𝐹‘1) gcd 𝑁) = 1))
6261simprd 114 . . . . 5 (𝜑 → ((𝐹‘1) gcd 𝑁) = 1)
6351, 57, 623eqtrd 2243 . . . 4 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1)
6463a1i 9 . . 3 ((ϕ‘𝑁) ∈ (ℤ‘1) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...1)(𝐹𝑥)) = 1))
65 simpr 110 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1)
6638adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
67 fzofzp1 10363 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁)))
6867adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁)))
6966, 68ffvelcdmd 5723 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
7054, 69sselid 3192 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
7152adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
72 gcdcom 12338 . . . . . . . . . . 11 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = (𝑁 gcd (𝐹‘(𝑘 + 1))))
7370, 71, 72syl2anc 411 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = (𝑁 gcd (𝐹‘(𝑘 + 1))))
74 oveq1 5958 . . . . . . . . . . . . . 14 (𝑦 = (𝐹‘(𝑘 + 1)) → (𝑦 gcd 𝑁) = ((𝐹‘(𝑘 + 1)) gcd 𝑁))
7574eqeq1d 2215 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑘 + 1)) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1))
7675, 29elrab2 2933 . . . . . . . . . . . 12 ((𝐹‘(𝑘 + 1)) ∈ 𝑆 ↔ ((𝐹‘(𝑘 + 1)) ∈ (0..^𝑁) ∧ ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1))
7776simprbi 275 . . . . . . . . . . 11 ((𝐹‘(𝑘 + 1)) ∈ 𝑆 → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1)
7869, 77syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐹‘(𝑘 + 1)) gcd 𝑁) = 1)
7973, 78eqtr3d 2241 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1)
8079adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1)
8128a1i 9 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 1 ∈ ℤ)
82 elfzoelz 10276 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈ ℤ)
8382adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ ℤ)
8481, 83fzfigd 10583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (1...𝑘) ∈ Fin)
8538ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
86 elfznn 10183 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℕ)
8786nnred 9056 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℝ)
8887adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ ℝ)
893nnred 9056 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
9089ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℝ)
9182ad2antlr 489 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 ∈ ℤ)
9291zred 9502 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 ∈ ℝ)
93 elfzle2 10157 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑘) → 𝑥𝑘)
9493adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥𝑘)
95 elfzolt2 10286 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 < (ϕ‘𝑁))
9695ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 < (ϕ‘𝑁))
9788, 92, 90, 94, 96lelttrd 8204 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 < (ϕ‘𝑁))
9888, 90, 97ltled 8198 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ≤ (ϕ‘𝑁))
99 elfzuz 10150 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑘) → 𝑥 ∈ (ℤ‘1))
10042ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℤ)
101 elfz5 10146 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℤ‘1) ∧ (ϕ‘𝑁) ∈ ℤ) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
10299, 100, 101syl2an2 594 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
10398, 102mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ (1...(ϕ‘𝑁)))
10485, 103ffvelcdmd 5723 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹𝑥) ∈ 𝑆)
10554, 104sselid 3192 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹𝑥) ∈ ℤ)
10684, 105fprodzcl 11964 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)(𝐹𝑥) ∈ ℤ)
107 rpmul 12464 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...𝑘)(𝐹𝑥) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ∈ ℤ) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
10871, 106, 70, 107syl3anc 1250 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
109108adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 ∧ (𝑁 gcd (𝐹‘(𝑘 + 1))) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
11065, 80, 109mp2and 433 . . . . . . 7 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1)
111 elfzouz 10280 . . . . . . . . . . . 12 (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈ (ℤ‘1))
112111adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ (ℤ‘1))
11338ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆)
114 elfzelz 10154 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℤ)
115114zred 9502 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℝ)
116115adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ ℝ)
11782ad2antlr 489 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑘 ∈ ℤ)
118117peano2zd 9505 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
119118zred 9502 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
12089ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈ ℝ)
121 elfzle2 10157 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ≤ (𝑘 + 1))
122121adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (𝑘 + 1))
123 elfzle2 10157 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ (1...(ϕ‘𝑁)) → (𝑘 + 1) ≤ (ϕ‘𝑁))
12467, 123syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝑘 + 1) ≤ (ϕ‘𝑁))
125124ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ≤ (ϕ‘𝑁))
126116, 119, 120, 122, 125letrd 8203 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (ϕ‘𝑁))
127 elfzuz 10150 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ (ℤ‘1))
12842ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈ ℤ)
129127, 128, 101syl2an2 594 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁)))
130126, 129mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
131113, 130ffvelcdmd 5723 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹𝑥) ∈ 𝑆)
13235, 131sselid 3192 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹𝑥) ∈ ℂ)
133 fveq2 5583 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
134112, 132, 133fprodp1 11955 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥) = (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1))))
135134oveq2d 5967 . . . . . . . . 9 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))))
136135eqeq1d 2215 . . . . . . . 8 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1 ↔ (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
137136adantr 276 . . . . . . 7 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → ((𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1 ↔ (𝑁 gcd (∏𝑥 ∈ (1...𝑘)(𝐹𝑥) · (𝐹‘(𝑘 + 1)))) = 1))
138110, 137mpbird 167 . . . . . 6 (((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)
139138ex 115 . . . . 5 ((𝜑𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1))
140139expcom 116 . . . 4 (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝜑 → ((𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
141140a2d 26 . . 3 (𝑘 ∈ (1..^(ϕ‘𝑁)) → ((𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...𝑘)(𝐹𝑥)) = 1) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹𝑥)) = 1)))
14212, 17, 22, 27, 64, 141fzind2 10375 . 2 ((ϕ‘𝑁) ∈ (1...(ϕ‘𝑁)) → (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1))
1437, 142mpcom 36 1 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  {crab 2489   class class class wbr 4047  wf 5272  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  cc 7930  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  cle 8115  cn 9043  0cn0 9302  cz 9379  cuz 9655  ...cfz 10137  ..^cfzo 10271  cprod 11905   gcd cgcd 12318  ϕcphi 12575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906  df-dvds 12143  df-gcd 12319  df-phi 12577
This theorem is referenced by:  eulerthlemth  12598
  Copyright terms: Public domain W3C validator