ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem GIF version

Theorem prodrbdclem 11611
Description: Lemma for prodrbdc 11614. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrbdc.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
prodrbdclem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem prodrbdclem
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mullid 7985 . . 3 (𝑛 ∈ ℂ → (1 · 𝑛) = 𝑛)
21adantl 277 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (1 · 𝑛) = 𝑛)
3 1cnd 8003 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 1 ∈ ℂ)
4 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 276 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 eluzelz 9567 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
75, 6syl 14 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℤ)
8 prodrbdc.dc . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
9 exmiddc 837 . . . . . . . . 9 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
108, 9syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
11 iftrue 3554 . . . . . . . . . . . . 13 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
1211adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
13 prodmo.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1412, 13eqeltrd 2266 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1514ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
16 iffalse 3557 . . . . . . . . . . . 12 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
17 ax-1cn 7934 . . . . . . . . . . . 12 1 ∈ ℂ
1816, 17eqeltrdi 2280 . . . . . . . . . . 11 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1918a1i 9 . . . . . . . . . 10 (𝜑 → (¬ 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
2015, 19jaod 718 . . . . . . . . 9 (𝜑 → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
2120adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
2210, 21mpd 13 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
2322ralrimiva 2563 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
24 nfcv 2332 . . . . . . . . . 10 𝑘𝑁
2524nfel1 2343 . . . . . . . . 9 𝑘 𝑁𝐴
26 nfcsb1v 3105 . . . . . . . . 9 𝑘𝑁 / 𝑘𝐵
27 nfcv 2332 . . . . . . . . 9 𝑘1
2825, 26, 27nfif 3577 . . . . . . . 8 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1)
2928nfel1 2343 . . . . . . 7 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1) ∈ ℂ
30 eleq1 2252 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝐴𝑁𝐴))
31 csbeq1a 3081 . . . . . . . . 9 (𝑘 = 𝑁𝐵 = 𝑁 / 𝑘𝐵)
3230, 31ifbieq1d 3571 . . . . . . . 8 (𝑘 = 𝑁 → if(𝑘𝐴, 𝐵, 1) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1))
3332eleq1d 2258 . . . . . . 7 (𝑘 = 𝑁 → (if(𝑘𝐴, 𝐵, 1) ∈ ℂ ↔ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1) ∈ ℂ))
3429, 33rspc 2850 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 1) ∈ ℂ → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1) ∈ ℂ))
354, 23, 34sylc 62 . . . . 5 (𝜑 → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1) ∈ ℂ)
3635adantr 276 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1) ∈ ℂ)
37 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
3824, 28, 32, 37fvmptf 5629 . . . 4 ((𝑁 ∈ ℤ ∧ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1) ∈ ℂ) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1))
397, 36, 38syl2anc 411 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 1))
4039, 36eqeltrd 2266 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
41 elfzelz 10055 . . . 4 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
42 elfzuz 10051 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ (ℤ𝑀))
4342adantl 277 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ𝑀))
4423ad2antrr 488 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
45 nfv 1539 . . . . . . . 8 𝑘 𝑛𝐴
46 nfcsb1v 3105 . . . . . . . 8 𝑘𝑛 / 𝑘𝐵
4745, 46, 27nfif 3577 . . . . . . 7 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1)
4847nfel1 2343 . . . . . 6 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) ∈ ℂ
49 eleq1w 2250 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
50 csbeq1a 3081 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
5149, 50ifbieq1d 3571 . . . . . . 7 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 1) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1))
5251eleq1d 2258 . . . . . 6 (𝑘 = 𝑛 → (if(𝑘𝐴, 𝐵, 1) ∈ ℂ ↔ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) ∈ ℂ))
5348, 52rspc 2850 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 1) ∈ ℂ → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) ∈ ℂ))
5443, 44, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) ∈ ℂ)
55 nfcv 2332 . . . . 5 𝑘𝑛
5655, 47, 51, 37fvmptf 5629 . . . 4 ((𝑛 ∈ ℤ ∧ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) ∈ ℂ) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1))
5741, 54, 56syl2an2 594 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1))
58 uznfz 10133 . . . . . . 7 (𝑛 ∈ (ℤ𝑁) → ¬ 𝑛 ∈ (𝑀...(𝑁 − 1)))
5958con2i 628 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ𝑁))
6059adantl 277 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ𝑁))
61 ssel 3164 . . . . . 6 (𝐴 ⊆ (ℤ𝑁) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6261ad2antlr 489 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6360, 62mtod 664 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
6463iffalsed 3559 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) = 1)
6557, 64eqtrd 2222 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 1)
66 eluzelz 9567 . . . 4 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
67 simpr 110 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
6823ad2antrr 488 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
6967, 68, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) ∈ ℂ)
7066, 69, 56syl2an2 594 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1))
7170, 69eqeltrd 2266 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) ∈ ℂ)
72 mulcl 7968 . . 3 ((𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑛 · 𝑧) ∈ ℂ)
7372adantl 277 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ (𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑛 · 𝑧) ∈ ℂ)
742, 3, 5, 40, 65, 71, 73seq3id 10539 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2160  wral 2468  csb 3072  wss 3144  ifcif 3549  cmpt 4079  cres 4646  cfv 5235  (class class class)co 5896  cc 7839  1c1 7842   · cmul 7846  cmin 8158  cz 9283  cuz 9558  ...cfz 10038  seqcseq 10476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039  df-fzo 10173  df-seqfrec 10477
This theorem is referenced by:  prodrbdclem2  11613
  Copyright terms: Public domain W3C validator