| Step | Hyp | Ref
| Expression |
| 1 | | eulerth.1 |
. . . . . 6
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| 2 | 1 | simp1d 1011 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 3 | 2 | phicld 12386 |
. . . 4
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℕ) |
| 4 | | elnnuz 9638 |
. . . 4
⊢
((ϕ‘𝑁)
∈ ℕ ↔ (ϕ‘𝑁) ∈
(ℤ≥‘1)) |
| 5 | 3, 4 | sylib 122 |
. . 3
⊢ (𝜑 → (ϕ‘𝑁) ∈
(ℤ≥‘1)) |
| 6 | | eluzfz2 10107 |
. . 3
⊢
((ϕ‘𝑁)
∈ (ℤ≥‘1) → (ϕ‘𝑁) ∈ (1...(ϕ‘𝑁))) |
| 7 | 5, 6 | syl 14 |
. 2
⊢ (𝜑 → (ϕ‘𝑁) ∈
(1...(ϕ‘𝑁))) |
| 8 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑤 = 1 → (𝐴↑𝑤) = (𝐴↑1)) |
| 9 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = 1 → (1...𝑤) = (1...1)) |
| 10 | 9 | prodeq1d 11729 |
. . . . . . 7
⊢ (𝑤 = 1 → ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥) = ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) |
| 11 | 8, 10 | oveq12d 5940 |
. . . . . 6
⊢ (𝑤 = 1 → ((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) = ((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥))) |
| 12 | 11 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = 1 → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) mod 𝑁)) |
| 13 | 9 | prodeq1d 11729 |
. . . . . 6
⊢ (𝑤 = 1 → ∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 14 | 13 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = 1 → (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) = (∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 15 | 12, 14 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 1 → ((((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) ↔ (((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 16 | 15 | imbi2d 230 |
. . 3
⊢ (𝑤 = 1 → ((𝜑 → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) ↔ (𝜑 → (((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)))) |
| 17 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝐴↑𝑤) = (𝐴↑𝑘)) |
| 18 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (1...𝑤) = (1...𝑘)) |
| 19 | 18 | prodeq1d 11729 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥) = ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) |
| 20 | 17, 19 | oveq12d 5940 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) = ((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥))) |
| 21 | 20 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = 𝑘 → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁)) |
| 22 | 18 | prodeq1d 11729 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 23 | 22 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = 𝑘 → (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 24 | 21, 23 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 𝑘 → ((((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) ↔ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 25 | 24 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) ↔ (𝜑 → (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)))) |
| 26 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → (𝐴↑𝑤) = (𝐴↑(𝑘 + 1))) |
| 27 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = (𝑘 + 1) → (1...𝑤) = (1...(𝑘 + 1))) |
| 28 | 27 | prodeq1d 11729 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥) = ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) |
| 29 | 26, 28 | oveq12d 5940 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → ((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) = ((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥))) |
| 30 | 29 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁)) |
| 31 | 27 | prodeq1d 11729 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → ∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 32 | 31 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 33 | 30, 32 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) ↔ (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 34 | 33 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) ↔ (𝜑 → (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)))) |
| 35 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑤 = (ϕ‘𝑁) → (𝐴↑𝑤) = (𝐴↑(ϕ‘𝑁))) |
| 36 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = (ϕ‘𝑁) → (1...𝑤) = (1...(ϕ‘𝑁))) |
| 37 | 36 | prodeq1d 11729 |
. . . . . . 7
⊢ (𝑤 = (ϕ‘𝑁) → ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) |
| 38 | 35, 37 | oveq12d 5940 |
. . . . . 6
⊢ (𝑤 = (ϕ‘𝑁) → ((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) = ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥))) |
| 39 | 38 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = (ϕ‘𝑁) → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁)) |
| 40 | 36 | prodeq1d 11729 |
. . . . . 6
⊢ (𝑤 = (ϕ‘𝑁) → ∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 41 | 40 | oveq1d 5937 |
. . . . 5
⊢ (𝑤 = (ϕ‘𝑁) → (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 42 | 39, 41 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = (ϕ‘𝑁) → ((((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) ↔ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 43 | 42 | imbi2d 230 |
. . 3
⊢ (𝑤 = (ϕ‘𝑁) → ((𝜑 → (((𝐴↑𝑤) · ∏𝑥 ∈ (1...𝑤)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑤)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) ↔ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)))) |
| 44 | 1 | simp2d 1012 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 45 | | eulerth.2 |
. . . . . . . . . . . 12
⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
| 46 | | ssrab2 3268 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁) |
| 47 | 45, 46 | eqsstri 3215 |
. . . . . . . . . . 11
⊢ 𝑆 ⊆ (0..^𝑁) |
| 48 | | fzo0ssnn0 10291 |
. . . . . . . . . . 11
⊢
(0..^𝑁) ⊆
ℕ0 |
| 49 | 47, 48 | sstri 3192 |
. . . . . . . . . 10
⊢ 𝑆 ⊆
ℕ0 |
| 50 | | nn0ssz 9344 |
. . . . . . . . . 10
⊢
ℕ0 ⊆ ℤ |
| 51 | 49, 50 | sstri 3192 |
. . . . . . . . 9
⊢ 𝑆 ⊆
ℤ |
| 52 | | eulerth.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) |
| 53 | | f1of 5504 |
. . . . . . . . . . 11
⊢ (𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆 → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 54 | 52, 53 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 55 | | 1nn 9001 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ |
| 56 | 55 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℕ) |
| 57 | 3 | nnge1d 9033 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ (ϕ‘𝑁)) |
| 58 | | elfz1b 10165 |
. . . . . . . . . . 11
⊢ (1 ∈
(1...(ϕ‘𝑁))
↔ (1 ∈ ℕ ∧ (ϕ‘𝑁) ∈ ℕ ∧ 1 ≤
(ϕ‘𝑁))) |
| 59 | 56, 3, 57, 58 | syl3anbrc 1183 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
(1...(ϕ‘𝑁))) |
| 60 | 54, 59 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘1) ∈ 𝑆) |
| 61 | 51, 60 | sselid 3181 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘1) ∈ ℤ) |
| 62 | 44, 61 | zmulcld 9454 |
. . . . . . 7
⊢ (𝜑 → (𝐴 · (𝐹‘1)) ∈ ℤ) |
| 63 | | zq 9700 |
. . . . . . 7
⊢ ((𝐴 · (𝐹‘1)) ∈ ℤ → (𝐴 · (𝐹‘1)) ∈ ℚ) |
| 64 | 62, 63 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝐴 · (𝐹‘1)) ∈ ℚ) |
| 65 | | nnq 9707 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) |
| 66 | 2, 65 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℚ) |
| 67 | 2 | nngt0d 9034 |
. . . . . 6
⊢ (𝜑 → 0 < 𝑁) |
| 68 | | modqabs2 10450 |
. . . . . 6
⊢ (((𝐴 · (𝐹‘1)) ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 <
𝑁) → (((𝐴 · (𝐹‘1)) mod 𝑁) mod 𝑁) = ((𝐴 · (𝐹‘1)) mod 𝑁)) |
| 69 | 64, 66, 67, 68 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (((𝐴 · (𝐹‘1)) mod 𝑁) mod 𝑁) = ((𝐴 · (𝐹‘1)) mod 𝑁)) |
| 70 | | 1z 9352 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 71 | 62, 2 | zmodcld 10437 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 · (𝐹‘1)) mod 𝑁) ∈
ℕ0) |
| 72 | 71 | nn0cnd 9304 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 · (𝐹‘1)) mod 𝑁) ∈ ℂ) |
| 73 | | fveq2 5558 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) |
| 74 | 73 | oveq2d 5938 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (𝐴 · (𝐹‘𝑥)) = (𝐴 · (𝐹‘1))) |
| 75 | 74 | oveq1d 5937 |
. . . . . . . 8
⊢ (𝑥 = 1 → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ((𝐴 · (𝐹‘1)) mod 𝑁)) |
| 76 | 75 | fprod1 11759 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ ((𝐴
· (𝐹‘1)) mod
𝑁) ∈ ℂ) →
∏𝑥 ∈
(1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ((𝐴 · (𝐹‘1)) mod 𝑁)) |
| 77 | 70, 72, 76 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → ∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ((𝐴 · (𝐹‘1)) mod 𝑁)) |
| 78 | 77 | oveq1d 5937 |
. . . . 5
⊢ (𝜑 → (∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) = (((𝐴 · (𝐹‘1)) mod 𝑁) mod 𝑁)) |
| 79 | 44 | zcnd 9449 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 80 | 79 | exp1d 10760 |
. . . . . . 7
⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| 81 | | nn0sscn 9254 |
. . . . . . . . . 10
⊢
ℕ0 ⊆ ℂ |
| 82 | 49, 81 | sstri 3192 |
. . . . . . . . 9
⊢ 𝑆 ⊆
ℂ |
| 83 | 82, 60 | sselid 3181 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘1) ∈ ℂ) |
| 84 | 73 | fprod1 11759 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ (𝐹‘1) ∈ ℂ) →
∏𝑥 ∈
(1...1)(𝐹‘𝑥) = (𝐹‘1)) |
| 85 | 70, 83, 84 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → ∏𝑥 ∈ (1...1)(𝐹‘𝑥) = (𝐹‘1)) |
| 86 | 80, 85 | oveq12d 5940 |
. . . . . 6
⊢ (𝜑 → ((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) = (𝐴 · (𝐹‘1))) |
| 87 | 86 | oveq1d 5937 |
. . . . 5
⊢ (𝜑 → (((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) mod 𝑁) = ((𝐴 · (𝐹‘1)) mod 𝑁)) |
| 88 | 69, 78, 87 | 3eqtr4rd 2240 |
. . . 4
⊢ (𝜑 → (((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 89 | 88 | a1i 9 |
. . 3
⊢
((ϕ‘𝑁)
∈ (ℤ≥‘1) → (𝜑 → (((𝐴↑1) · ∏𝑥 ∈ (1...1)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...1)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 90 | 44 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝐴 ∈ ℤ) |
| 91 | | elfzo1 10266 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1..^(ϕ‘𝑁)) ↔ (𝑘 ∈ ℕ ∧ (ϕ‘𝑁) ∈ ℕ ∧ 𝑘 < (ϕ‘𝑁))) |
| 92 | 91 | simp1bi 1014 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈ ℕ) |
| 93 | 92 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ ℕ) |
| 94 | 93 | nnnn0d 9302 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ ℕ0) |
| 95 | | zexpcl 10646 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℤ) |
| 96 | 90, 94, 95 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐴↑𝑘) ∈ ℤ) |
| 97 | 70 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 1 ∈
ℤ) |
| 98 | 93 | nnzd 9447 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ ℤ) |
| 99 | 97, 98 | fzfigd 10523 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (1...𝑘) ∈ Fin) |
| 100 | 54 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 101 | | elfzelz 10100 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℤ) |
| 102 | 101 | zred 9448 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℝ) |
| 103 | 102 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ ℝ) |
| 104 | 3 | nnzd 9447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℤ) |
| 105 | 104 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℤ) |
| 106 | 105 | zred 9448 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (ϕ‘𝑁) ∈ ℝ) |
| 107 | 93 | nnred 9003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈ ℝ) |
| 108 | 107 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 ∈ ℝ) |
| 109 | | elfzle2 10103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ≤ 𝑘) |
| 110 | 109 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ≤ 𝑘) |
| 111 | | elfzolt2 10232 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 < (ϕ‘𝑁)) |
| 112 | 111 | ad2antlr 489 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑘 < (ϕ‘𝑁)) |
| 113 | 103, 108,
106, 110, 112 | lelttrd 8151 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 < (ϕ‘𝑁)) |
| 114 | 103, 106,
113 | ltled 8145 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ≤ (ϕ‘𝑁)) |
| 115 | | elfzuz 10096 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈
(ℤ≥‘1)) |
| 116 | | elfz5 10092 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈
(ℤ≥‘1) ∧ (ϕ‘𝑁) ∈ ℤ) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁))) |
| 117 | 115, 105,
116 | syl2an2 594 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁))) |
| 118 | 114, 117 | mpbird 167 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑥 ∈ (1...(ϕ‘𝑁))) |
| 119 | 100, 118 | ffvelcdmd 5698 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹‘𝑥) ∈ 𝑆) |
| 120 | 51, 119 | sselid 3181 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐹‘𝑥) ∈ ℤ) |
| 121 | 99, 120 | fprodzcl 11774 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥) ∈ ℤ) |
| 122 | 96, 121 | zmulcld 9454 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) ∈ ℤ) |
| 123 | | zq 9700 |
. . . . . . . . . 10
⊢ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) ∈ ℤ → ((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) ∈ ℚ) |
| 124 | 122, 123 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) ∈ ℚ) |
| 125 | 124 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → ((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) ∈ ℚ) |
| 126 | 90 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝐴 ∈ ℤ) |
| 127 | 126, 120 | zmulcld 9454 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → (𝐴 · (𝐹‘𝑥)) ∈ ℤ) |
| 128 | 2 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → 𝑁 ∈ ℕ) |
| 129 | 127, 128 | zmodcld 10437 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈
ℕ0) |
| 130 | 129 | nn0zd 9446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...𝑘)) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℤ) |
| 131 | 99, 130 | fprodzcl 11774 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℤ) |
| 132 | | zq 9700 |
. . . . . . . . . 10
⊢
(∏𝑥 ∈
(1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℤ → ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℚ) |
| 133 | 131, 132 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℚ) |
| 134 | 133 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℚ) |
| 135 | 44 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → 𝐴 ∈ ℤ) |
| 136 | 54 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 137 | | fzofzp1 10303 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁))) |
| 138 | 137 | ad2antlr 489 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁))) |
| 139 | 136, 138 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆) |
| 140 | 51, 139 | sselid 3181 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℤ) |
| 141 | 135, 140 | zmulcld 9454 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → (𝐴 · (𝐹‘(𝑘 + 1))) ∈ ℤ) |
| 142 | 66 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → 𝑁 ∈ ℚ) |
| 143 | 67 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → 0 < 𝑁) |
| 144 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 145 | 125, 134,
141, 142, 143, 144 | modqmul1 10469 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → ((((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁) = ((∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁)) |
| 146 | 145 | ex 115 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) → ((((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁) = ((∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁))) |
| 147 | 96 | zcnd 9449 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐴↑𝑘) ∈ ℂ) |
| 148 | 121 | zcnd 9449 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥) ∈ ℂ) |
| 149 | 79 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝐴 ∈ ℂ) |
| 150 | 54 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 151 | 137 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁))) |
| 152 | 150, 151 | ffvelcdmd 5698 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ 𝑆) |
| 153 | 82, 152 | sselid 3181 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ ℂ) |
| 154 | 147, 148,
149, 153 | mul4d 8181 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) · (𝐴 · (𝐹‘(𝑘 + 1)))) = (((𝐴↑𝑘) · 𝐴) · (∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥) · (𝐹‘(𝑘 + 1))))) |
| 155 | 149, 94 | expp1d 10766 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 156 | | elfzouz 10226 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1..^(ϕ‘𝑁)) → 𝑘 ∈
(ℤ≥‘1)) |
| 157 | 156 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑘 ∈
(ℤ≥‘1)) |
| 158 | 150 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 159 | | elfzelz 10100 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℤ) |
| 160 | 159 | zred 9448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈ ℝ) |
| 161 | 160 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ ℝ) |
| 162 | | peano2re 8162 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
| 163 | 107, 162 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝑘 + 1) ∈ ℝ) |
| 164 | 163 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ ℝ) |
| 165 | 104 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈
ℤ) |
| 166 | 165 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (ϕ‘𝑁) ∈
ℝ) |
| 167 | | elfzle2 10103 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ≤ (𝑘 + 1)) |
| 168 | 167 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (𝑘 + 1)) |
| 169 | 137 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ∈ (1...(ϕ‘𝑁))) |
| 170 | | elfzle2 10103 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 + 1) ∈
(1...(ϕ‘𝑁))
→ (𝑘 + 1) ≤
(ϕ‘𝑁)) |
| 171 | 169, 170 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑘 + 1) ≤ (ϕ‘𝑁)) |
| 172 | 161, 164,
166, 168, 171 | letrd 8150 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ≤ (ϕ‘𝑁)) |
| 173 | | elfzuz 10096 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1...(𝑘 + 1)) → 𝑥 ∈
(ℤ≥‘1)) |
| 174 | 173, 165,
116 | syl2an2 594 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝑥 ∈ (1...(ϕ‘𝑁)) ↔ 𝑥 ≤ (ϕ‘𝑁))) |
| 175 | 172, 174 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑥 ∈ (1...(ϕ‘𝑁))) |
| 176 | 158, 175 | ffvelcdmd 5698 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹‘𝑥) ∈ 𝑆) |
| 177 | 82, 176 | sselid 3181 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹‘𝑥) ∈ ℂ) |
| 178 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
| 179 | 157, 177,
178 | fprodp1 11765 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥) = (∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥) · (𝐹‘(𝑘 + 1)))) |
| 180 | 155, 179 | oveq12d 5940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) = (((𝐴↑𝑘) · 𝐴) · (∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥) · (𝐹‘(𝑘 + 1))))) |
| 181 | 154, 180 | eqtr4d 2232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) · (𝐴 · (𝐹‘(𝑘 + 1)))) = ((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥))) |
| 182 | 181 | oveq1d 5937 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁) = (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁)) |
| 183 | 51, 152 | sselid 3181 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐹‘(𝑘 + 1)) ∈ ℤ) |
| 184 | 90, 183 | zmulcld 9454 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐴 · (𝐹‘(𝑘 + 1))) ∈ ℤ) |
| 185 | 2 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑁 ∈ ℕ) |
| 186 | 184, 185 | zmodcld 10437 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) ∈
ℕ0) |
| 187 | 186 | nn0zd 9446 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) ∈ ℤ) |
| 188 | | zq 9700 |
. . . . . . . . . 10
⊢ (((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) ∈ ℤ → ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) ∈ ℚ) |
| 189 | 187, 188 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) ∈ ℚ) |
| 190 | | zq 9700 |
. . . . . . . . . 10
⊢ ((𝐴 · (𝐹‘(𝑘 + 1))) ∈ ℤ → (𝐴 · (𝐹‘(𝑘 + 1))) ∈ ℚ) |
| 191 | 184, 190 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐴 · (𝐹‘(𝑘 + 1))) ∈ ℚ) |
| 192 | 66 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 𝑁 ∈ ℚ) |
| 193 | 67 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → 0 < 𝑁) |
| 194 | | modqabs2 10450 |
. . . . . . . . . 10
⊢ (((𝐴 · (𝐹‘(𝑘 + 1))) ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 <
𝑁) → (((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) mod 𝑁) = ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁)) |
| 195 | 191, 192,
193, 194 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) mod 𝑁) = ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁)) |
| 196 | 189, 191,
131, 192, 193, 195 | modqmul1 10469 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) · ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁)) mod 𝑁) = (((𝐴 · (𝐹‘(𝑘 + 1))) · ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁)) mod 𝑁)) |
| 197 | 90 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝐴 ∈ ℤ) |
| 198 | 51, 176 | sselid 3181 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐹‘𝑥) ∈ ℤ) |
| 199 | 197, 198 | zmulcld 9454 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → (𝐴 · (𝐹‘𝑥)) ∈ ℤ) |
| 200 | 185 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → 𝑁 ∈ ℕ) |
| 201 | 199, 200 | zmodcld 10437 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈
ℕ0) |
| 202 | 201 | nn0cnd 9304 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) ∧ 𝑥 ∈ (1...(𝑘 + 1))) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℂ) |
| 203 | 178 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑘 + 1) → (𝐴 · (𝐹‘𝑥)) = (𝐴 · (𝐹‘(𝑘 + 1)))) |
| 204 | 203 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁)) |
| 205 | 157, 202,
204 | fprodp1 11765 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁))) |
| 206 | 186 | nn0cnd 9304 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) ∈ ℂ) |
| 207 | 131 | zcnd 9449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℂ) |
| 208 | 206, 207 | mulcomd 8048 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) · ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁)) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · ((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁))) |
| 209 | 205, 208 | eqtr4d 2232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) = (((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) · ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁))) |
| 210 | 209 | oveq1d 5937 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) = ((((𝐴 · (𝐹‘(𝑘 + 1))) mod 𝑁) · ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁)) mod 𝑁)) |
| 211 | 149, 153 | mulcld 8047 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (𝐴 · (𝐹‘(𝑘 + 1))) ∈ ℂ) |
| 212 | 207, 211 | mulcomd 8048 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · (𝐴 · (𝐹‘(𝑘 + 1)))) = ((𝐴 · (𝐹‘(𝑘 + 1))) · ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁))) |
| 213 | 212 | oveq1d 5937 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁) = (((𝐴 · (𝐹‘(𝑘 + 1))) · ∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁)) mod 𝑁)) |
| 214 | 196, 210,
213 | 3eqtr4rd 2240 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 215 | 182, 214 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → (((((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁) = ((∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) · (𝐴 · (𝐹‘(𝑘 + 1)))) mod 𝑁) ↔ (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 216 | 146, 215 | sylibd 149 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1..^(ϕ‘𝑁))) → ((((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) → (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 217 | 216 | expcom 116 |
. . . 4
⊢ (𝑘 ∈ (1..^(ϕ‘𝑁)) → (𝜑 → ((((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) → (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)))) |
| 218 | 217 | a2d 26 |
. . 3
⊢ (𝑘 ∈ (1..^(ϕ‘𝑁)) → ((𝜑 → (((𝐴↑𝑘) · ∏𝑥 ∈ (1...𝑘)(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...𝑘)((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) → (𝜑 → (((𝐴↑(𝑘 + 1)) · ∏𝑥 ∈ (1...(𝑘 + 1))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(𝑘 + 1))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)))) |
| 219 | 16, 25, 34, 43, 89, 218 | fzind2 10315 |
. 2
⊢
((ϕ‘𝑁)
∈ (1...(ϕ‘𝑁)) → (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁))) |
| 220 | 7, 219 | mpcom 36 |
1
⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |