| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnf1o | GIF version | ||
| Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| ixpsnf1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) |
| Ref | Expression |
|---|---|
| mapsnf1o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpsnf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) | |
| 2 | 1 | ixpsnf1o 6846 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
| 4 | snexg 4244 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → {𝐼} ∈ V) | |
| 5 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 6 | ixpconstg 6817 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴 ↑𝑚 {𝐼})) | |
| 7 | 6 | eqcomd 2213 | . . . 4 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
| 8 | 4, 5, 7 | syl2an2 594 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
| 9 | f1oeq3 5534 | . . 3 ⊢ ((𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴 → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) |
| 11 | 3, 10 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2776 {csn 3643 ↦ cmpt 4121 × cxp 4691 –1-1-onto→wf1o 5289 (class class class)co 5967 ↑𝑚 cmap 6758 Xcixp 6808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 df-ixp 6809 |
| This theorem is referenced by: pwssnf1o 13245 |
| Copyright terms: Public domain | W3C validator |