![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapsnf1o | GIF version |
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
ixpsnf1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) |
Ref | Expression |
---|---|
mapsnf1o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpsnf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) | |
2 | 1 | ixpsnf1o 6738 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
4 | snexg 4186 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → {𝐼} ∈ V) | |
5 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
6 | ixpconstg 6709 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴 ↑𝑚 {𝐼})) | |
7 | 6 | eqcomd 2183 | . . . 4 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
8 | 4, 5, 7 | syl2an2 594 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
9 | f1oeq3 5453 | . . 3 ⊢ ((𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴 → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) |
11 | 3, 10 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 ↦ cmpt 4066 × cxp 4626 –1-1-onto→wf1o 5217 (class class class)co 5877 ↑𝑚 cmap 6650 Xcixp 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-map 6652 df-ixp 6701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |