ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o GIF version

Theorem mapsnf1o 6624
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
mapsnf1o ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mapsnf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
21ixpsnf1o 6623 . . 3 (𝐼𝑊𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
32adantl 275 . 2 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
4 snexg 4103 . . . 4 (𝐼𝑊 → {𝐼} ∈ V)
5 simpl 108 . . . 4 ((𝐴𝑉𝐼𝑊) → 𝐴𝑉)
6 ixpconstg 6594 . . . . 5 (({𝐼} ∈ V ∧ 𝐴𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴𝑚 {𝐼}))
76eqcomd 2143 . . . 4 (({𝐼} ∈ V ∧ 𝐴𝑉) → (𝐴𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
84, 5, 7syl2an2 583 . . 3 ((𝐴𝑉𝐼𝑊) → (𝐴𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
9 f1oeq3 5353 . . 3 ((𝐴𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴 → (𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}) ↔ 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴))
108, 9syl 14 . 2 ((𝐴𝑉𝐼𝑊) → (𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}) ↔ 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴))
113, 10mpbird 166 1 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2681  {csn 3522  cmpt 3984   × cxp 4532  1-1-ontowf1o 5117  (class class class)co 5767  𝑚 cmap 6535  Xcixp 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-map 6537  df-ixp 6586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator