![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapsnf1o | GIF version |
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
ixpsnf1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) |
Ref | Expression |
---|---|
mapsnf1o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpsnf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) | |
2 | 1 | ixpsnf1o 6533 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
3 | 2 | adantl 272 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
4 | snexg 4040 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → {𝐼} ∈ V) | |
5 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
6 | ixpconstg 6504 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴 ↑𝑚 {𝐼})) | |
7 | 6 | eqcomd 2100 | . . . 4 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
8 | 4, 5, 7 | syl2an2 562 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
9 | f1oeq3 5281 | . . 3 ⊢ ((𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴 → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) |
11 | 3, 10 | mpbird 166 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 Vcvv 2633 {csn 3466 ↦ cmpt 3921 × cxp 4465 –1-1-onto→wf1o 5048 (class class class)co 5690 ↑𝑚 cmap 6445 Xcixp 6495 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-map 6447 df-ixp 6496 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |