Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsnf1o | GIF version |
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
ixpsnf1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) |
Ref | Expression |
---|---|
mapsnf1o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpsnf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) | |
2 | 1 | ixpsnf1o 6714 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
3 | 2 | adantl 275 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
4 | snexg 4170 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → {𝐼} ∈ V) | |
5 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
6 | ixpconstg 6685 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴 ↑𝑚 {𝐼})) | |
7 | 6 | eqcomd 2176 | . . . 4 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
8 | 4, 5, 7 | syl2an2 589 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
9 | f1oeq3 5433 | . . 3 ⊢ ((𝐴 ↑𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴 → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) |
11 | 3, 10 | mpbird 166 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 ↦ cmpt 4050 × cxp 4609 –1-1-onto→wf1o 5197 (class class class)co 5853 ↑𝑚 cmap 6626 Xcixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 df-ixp 6677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |