ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o GIF version

Theorem mapsnf1o 6884
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
mapsnf1o ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mapsnf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
21ixpsnf1o 6883 . . 3 (𝐼𝑊𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
32adantl 277 . 2 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
4 snexg 4268 . . . 4 (𝐼𝑊 → {𝐼} ∈ V)
5 simpl 109 . . . 4 ((𝐴𝑉𝐼𝑊) → 𝐴𝑉)
6 ixpconstg 6854 . . . . 5 (({𝐼} ∈ V ∧ 𝐴𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴𝑚 {𝐼}))
76eqcomd 2235 . . . 4 (({𝐼} ∈ V ∧ 𝐴𝑉) → (𝐴𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
84, 5, 7syl2an2 596 . . 3 ((𝐴𝑉𝐼𝑊) → (𝐴𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
9 f1oeq3 5562 . . 3 ((𝐴𝑚 {𝐼}) = X𝑦 ∈ {𝐼}𝐴 → (𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}) ↔ 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴))
108, 9syl 14 . 2 ((𝐴𝑉𝐼𝑊) → (𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}) ↔ 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴))
113, 10mpbird 167 1 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cmpt 4145   × cxp 4717  1-1-ontowf1o 5317  (class class class)co 6001  𝑚 cmap 6795  Xcixp 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797  df-ixp 6846
This theorem is referenced by:  pwssnf1o  13331
  Copyright terms: Public domain W3C validator