| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 6022. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fvoveq1d 6022 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ‘cfv 5317 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: fldiv4lem1div2 10522 seq3val 10677 seqvalcd 10678 seqf 10681 seq3p1 10682 seqovcd 10684 seqp1cd 10687 seq3shft2 10698 seqshft2g 10699 seq3f1olemqsum 10730 seqhomog 10747 facp1 10947 lsw0 11114 ccatval1 11127 ccatval2 11128 swrdfv 11180 serf0 11858 fsumrelem 11977 mertenslemub 12040 mertenslemi1 12041 mertenslem2 12042 mertensabs 12043 bitsfval 12448 pcfac 12868 ennnfonelemj0 12967 ennnfonelemjn 12968 ennnfonelem0 12971 ennnfonelemp1 12972 ennnfonelemnn0 12988 nninfdclemcl 13014 nninfdclemp1 13016 nninfdc 13019 imasaddvallemg 13343 mhmlin 13495 mhmlem 13646 mulginvcom 13679 mhmmulg 13695 ghmlin 13780 comet 15167 mulc1cncf 15257 cncfco 15259 mulcncflem 15275 mulcncf 15276 ivthinclemlopn 15304 ivthinclemuopn 15306 limcimolemlt 15332 limccoap 15346 dvply1 15433 dvply2g 15434 eflt 15443 rpcxpef 15562 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 wkslem1 16026 |
| Copyright terms: Public domain | W3C validator |