Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version |
Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5863. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fvoveq1d 5863 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ‘cfv 5187 (class class class)co 5841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: seq3val 10389 seqvalcd 10390 seqf 10392 seq3p1 10393 seqovcd 10394 seqp1cd 10397 seq3shft2 10404 seq3f1olemqsum 10431 facp1 10639 serf0 11289 fsumrelem 11408 mertenslemub 11471 mertenslemi1 11472 mertenslem2 11473 mertensabs 11474 pcfac 12276 ennnfonelemj0 12330 ennnfonelemjn 12331 ennnfonelem0 12334 ennnfonelemp1 12335 ennnfonelemnn0 12351 nninfdclemcl 12377 nninfdclemp1 12379 nninfdc 12382 comet 13099 mulc1cncf 13176 cncfco 13178 mulcncflem 13190 mulcncf 13191 ivthinclemlopn 13214 ivthinclemuopn 13216 limcimolemlt 13233 limccoap 13247 eflt 13296 rpcxpef 13415 |
Copyright terms: Public domain | W3C validator |