![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version |
Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5941. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fvoveq1d 5941 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5255 (class class class)co 5919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: fldiv4lem1div2 10379 seq3val 10534 seqvalcd 10535 seqf 10538 seq3p1 10539 seqovcd 10541 seqp1cd 10544 seq3shft2 10555 seqshft2g 10556 seq3f1olemqsum 10587 seqhomog 10604 facp1 10804 serf0 11498 fsumrelem 11617 mertenslemub 11680 mertenslemi1 11681 mertenslem2 11682 mertensabs 11683 pcfac 12491 ennnfonelemj0 12561 ennnfonelemjn 12562 ennnfonelem0 12565 ennnfonelemp1 12566 ennnfonelemnn0 12582 nninfdclemcl 12608 nninfdclemp1 12610 nninfdc 12613 imasaddvallemg 12901 mhmlin 13042 mhmlem 13187 mulginvcom 13220 mhmmulg 13236 ghmlin 13321 comet 14678 mulc1cncf 14768 cncfco 14770 mulcncflem 14786 mulcncf 14787 ivthinclemlopn 14815 ivthinclemuopn 14817 limcimolemlt 14843 limccoap 14857 dvply1 14943 eflt 14951 rpcxpef 15070 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 |
Copyright terms: Public domain | W3C validator |