| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5947. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fvoveq1d 5947 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ‘cfv 5259 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: fldiv4lem1div2 10416 seq3val 10571 seqvalcd 10572 seqf 10575 seq3p1 10576 seqovcd 10578 seqp1cd 10581 seq3shft2 10592 seqshft2g 10593 seq3f1olemqsum 10624 seqhomog 10641 facp1 10841 serf0 11536 fsumrelem 11655 mertenslemub 11718 mertenslemi1 11719 mertenslem2 11720 mertensabs 11721 bitsfval 12126 pcfac 12546 ennnfonelemj0 12645 ennnfonelemjn 12646 ennnfonelem0 12649 ennnfonelemp1 12650 ennnfonelemnn0 12666 nninfdclemcl 12692 nninfdclemp1 12694 nninfdc 12697 imasaddvallemg 13019 mhmlin 13171 mhmlem 13322 mulginvcom 13355 mhmmulg 13371 ghmlin 13456 comet 14843 mulc1cncf 14933 cncfco 14935 mulcncflem 14951 mulcncf 14952 ivthinclemlopn 14980 ivthinclemuopn 14982 limcimolemlt 15008 limccoap 15022 dvply1 15109 dvply2g 15110 eflt 15119 rpcxpef 15238 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 |
| Copyright terms: Public domain | W3C validator |