Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version |
Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5879. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fvoveq1d 5879 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1349 ‘cfv 5200 (class class class)co 5857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-rex 2455 df-v 2733 df-un 3126 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-br 3991 df-iota 5162 df-fv 5208 df-ov 5860 |
This theorem is referenced by: seq3val 10418 seqvalcd 10419 seqf 10421 seq3p1 10422 seqovcd 10423 seqp1cd 10426 seq3shft2 10433 seq3f1olemqsum 10460 facp1 10668 serf0 11319 fsumrelem 11438 mertenslemub 11501 mertenslemi1 11502 mertenslem2 11503 mertensabs 11504 pcfac 12306 ennnfonelemj0 12360 ennnfonelemjn 12361 ennnfonelem0 12364 ennnfonelemp1 12365 ennnfonelemnn0 12381 nninfdclemcl 12407 nninfdclemp1 12409 nninfdc 12412 mhmlin 12694 mhmlem 12811 mulginvcom 12840 mhmmulg 12856 comet 13378 mulc1cncf 13455 cncfco 13457 mulcncflem 13469 mulcncf 13470 ivthinclemlopn 13493 ivthinclemuopn 13495 limcimolemlt 13512 limccoap 13526 eflt 13575 rpcxpef 13694 |
Copyright terms: Public domain | W3C validator |