![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version |
Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5940. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fvoveq1d 5940 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5254 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: fldiv4lem1div2 10376 seq3val 10531 seqvalcd 10532 seqf 10535 seq3p1 10536 seqovcd 10538 seqp1cd 10541 seq3shft2 10552 seqshft2g 10553 seq3f1olemqsum 10584 seqhomog 10601 facp1 10801 serf0 11495 fsumrelem 11614 mertenslemub 11677 mertenslemi1 11678 mertenslem2 11679 mertensabs 11680 pcfac 12488 ennnfonelemj0 12558 ennnfonelemjn 12559 ennnfonelem0 12562 ennnfonelemp1 12563 ennnfonelemnn0 12579 nninfdclemcl 12605 nninfdclemp1 12607 nninfdc 12610 imasaddvallemg 12898 mhmlin 13039 mhmlem 13184 mulginvcom 13217 mhmmulg 13233 ghmlin 13318 comet 14667 mulc1cncf 14744 cncfco 14746 mulcncflem 14761 mulcncf 14762 ivthinclemlopn 14790 ivthinclemuopn 14792 limcimolemlt 14818 limccoap 14832 eflt 14910 rpcxpef 15029 |
Copyright terms: Public domain | W3C validator |