| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5989. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fvoveq1d 5989 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ‘cfv 5290 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: fldiv4lem1div2 10487 seq3val 10642 seqvalcd 10643 seqf 10646 seq3p1 10647 seqovcd 10649 seqp1cd 10652 seq3shft2 10663 seqshft2g 10664 seq3f1olemqsum 10695 seqhomog 10712 facp1 10912 lsw0 11078 ccatval1 11091 ccatval2 11092 swrdfv 11144 serf0 11778 fsumrelem 11897 mertenslemub 11960 mertenslemi1 11961 mertenslem2 11962 mertensabs 11963 bitsfval 12368 pcfac 12788 ennnfonelemj0 12887 ennnfonelemjn 12888 ennnfonelem0 12891 ennnfonelemp1 12892 ennnfonelemnn0 12908 nninfdclemcl 12934 nninfdclemp1 12936 nninfdc 12939 imasaddvallemg 13262 mhmlin 13414 mhmlem 13565 mulginvcom 13598 mhmmulg 13614 ghmlin 13699 comet 15086 mulc1cncf 15176 cncfco 15178 mulcncflem 15194 mulcncf 15195 ivthinclemlopn 15223 ivthinclemuopn 15225 limcimolemlt 15251 limccoap 15265 dvply1 15352 dvply2g 15353 eflt 15362 rpcxpef 15481 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 |
| Copyright terms: Public domain | W3C validator |