![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version |
Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5918. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fvoveq1d 5918 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5235 (class class class)co 5896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5899 |
This theorem is referenced by: seq3val 10489 seqvalcd 10490 seqf 10492 seq3p1 10493 seqovcd 10494 seqp1cd 10497 seq3shft2 10504 seq3f1olemqsum 10531 facp1 10742 serf0 11392 fsumrelem 11511 mertenslemub 11574 mertenslemi1 11575 mertenslem2 11576 mertensabs 11577 pcfac 12382 ennnfonelemj0 12452 ennnfonelemjn 12453 ennnfonelem0 12456 ennnfonelemp1 12457 ennnfonelemnn0 12473 nninfdclemcl 12499 nninfdclemp1 12501 nninfdc 12504 imasaddvallemg 12792 mhmlin 12919 mhmlem 13056 mulginvcom 13087 mhmmulg 13103 ghmlin 13187 comet 14456 mulc1cncf 14533 cncfco 14535 mulcncflem 14547 mulcncf 14548 ivthinclemlopn 14571 ivthinclemuopn 14573 limcimolemlt 14590 limccoap 14604 eflt 14653 rpcxpef 14772 |
Copyright terms: Public domain | W3C validator |