| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5966. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fvoveq1d 5966 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ‘cfv 5271 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: fldiv4lem1div2 10450 seq3val 10605 seqvalcd 10606 seqf 10609 seq3p1 10610 seqovcd 10612 seqp1cd 10615 seq3shft2 10626 seqshft2g 10627 seq3f1olemqsum 10658 seqhomog 10675 facp1 10875 lsw0 11041 ccatval1 11053 ccatval2 11054 swrdfv 11106 serf0 11663 fsumrelem 11782 mertenslemub 11845 mertenslemi1 11846 mertenslem2 11847 mertensabs 11848 bitsfval 12253 pcfac 12673 ennnfonelemj0 12772 ennnfonelemjn 12773 ennnfonelem0 12776 ennnfonelemp1 12777 ennnfonelemnn0 12793 nninfdclemcl 12819 nninfdclemp1 12821 nninfdc 12824 imasaddvallemg 13147 mhmlin 13299 mhmlem 13450 mulginvcom 13483 mhmmulg 13499 ghmlin 13584 comet 14971 mulc1cncf 15061 cncfco 15063 mulcncflem 15079 mulcncf 15080 ivthinclemlopn 15108 ivthinclemuopn 15110 limcimolemlt 15136 limccoap 15150 dvply1 15237 dvply2g 15238 eflt 15247 rpcxpef 15366 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 |
| Copyright terms: Public domain | W3C validator |