| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5965. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fvoveq1d 5965 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ‘cfv 5270 (class class class)co 5943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 |
| This theorem is referenced by: fldiv4lem1div2 10448 seq3val 10603 seqvalcd 10604 seqf 10607 seq3p1 10608 seqovcd 10610 seqp1cd 10613 seq3shft2 10624 seqshft2g 10625 seq3f1olemqsum 10656 seqhomog 10673 facp1 10873 lsw0 11039 ccatval1 11051 ccatval2 11052 serf0 11634 fsumrelem 11753 mertenslemub 11816 mertenslemi1 11817 mertenslem2 11818 mertensabs 11819 bitsfval 12224 pcfac 12644 ennnfonelemj0 12743 ennnfonelemjn 12744 ennnfonelem0 12747 ennnfonelemp1 12748 ennnfonelemnn0 12764 nninfdclemcl 12790 nninfdclemp1 12792 nninfdc 12795 imasaddvallemg 13118 mhmlin 13270 mhmlem 13421 mulginvcom 13454 mhmmulg 13470 ghmlin 13555 comet 14942 mulc1cncf 15032 cncfco 15034 mulcncflem 15050 mulcncf 15051 ivthinclemlopn 15079 ivthinclemuopn 15081 limcimolemlt 15107 limccoap 15121 dvply1 15208 dvply2g 15209 eflt 15218 rpcxpef 15337 2lgslem3a 15541 2lgslem3b 15542 2lgslem3c 15543 2lgslem3d 15544 |
| Copyright terms: Public domain | W3C validator |