Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvoveq1 | GIF version |
Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5887. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fvoveq1d 5887 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ‘cfv 5208 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: seq3val 10428 seqvalcd 10429 seqf 10431 seq3p1 10432 seqovcd 10433 seqp1cd 10436 seq3shft2 10443 seq3f1olemqsum 10470 facp1 10678 serf0 11328 fsumrelem 11447 mertenslemub 11510 mertenslemi1 11511 mertenslem2 11512 mertensabs 11513 pcfac 12315 ennnfonelemj0 12369 ennnfonelemjn 12370 ennnfonelem0 12373 ennnfonelemp1 12374 ennnfonelemnn0 12390 nninfdclemcl 12416 nninfdclemp1 12418 nninfdc 12421 mhmlin 12730 mhmlem 12848 mulginvcom 12877 mhmmulg 12893 comet 13579 mulc1cncf 13656 cncfco 13658 mulcncflem 13670 mulcncf 13671 ivthinclemlopn 13694 ivthinclemuopn 13696 limcimolemlt 13713 limccoap 13727 eflt 13776 rpcxpef 13895 |
Copyright terms: Public domain | W3C validator |