MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthfilem Structured version   Visualization version   GIF version

Theorem sbthfilem 9203
Description: Lemma for sbthfi 9204. (Contributed by BTernaryTau, 4-Nov-2024.)
Hypotheses
Ref Expression
sbthfilem.1 𝐴 ∈ V
sbthfilem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthfilem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthfilem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthfilem ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐻   𝐴,𝑓,𝑔,𝑥   𝐵,𝑓,𝑔,𝑥
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthfilem
StepHypRef Expression
1 19.42vv 1961 . . 3 (∃𝑓𝑔(𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
2 3anass 1095 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
322exbii 1851 . . 3 (∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ ∃𝑓𝑔(𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
4 3anass 1095 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ (𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)))
5 sbthfilem.4 . . . . . . . 8 𝐵 ∈ V
65brdom 8958 . . . . . . 7 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
7 sbthfilem.1 . . . . . . . 8 𝐴 ∈ V
87brdom 8958 . . . . . . 7 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
96, 8anbi12i 627 . . . . . 6 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
10 exdistrv 1959 . . . . . 6 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
119, 10bitr4i 277 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
1211anbi2i 623 . . . 4 ((𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
134, 12bitri 274 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
141, 3, 133bitr4ri 303 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
15 f1fn 6788 . . . . . 6 (𝑔:𝐵1-1𝐴𝑔 Fn 𝐵)
16 sbthfilem.3 . . . . . . . 8 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
17 vex 3478 . . . . . . . . . 10 𝑓 ∈ V
1817resex 6029 . . . . . . . . 9 (𝑓 𝐷) ∈ V
19 fnfi 9183 . . . . . . . . . 10 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝑔 ∈ Fin)
20 cnvfi 9182 . . . . . . . . . 10 (𝑔 ∈ Fin → 𝑔 ∈ Fin)
21 resexg 6027 . . . . . . . . . 10 (𝑔 ∈ Fin → (𝑔 ↾ (𝐴 𝐷)) ∈ V)
2219, 20, 213syl 18 . . . . . . . . 9 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → (𝑔 ↾ (𝐴 𝐷)) ∈ V)
23 unexg 7738 . . . . . . . . 9 (((𝑓 𝐷) ∈ V ∧ (𝑔 ↾ (𝐴 𝐷)) ∈ V) → ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V)
2418, 22, 23sylancr 587 . . . . . . . 8 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V)
2516, 24eqeltrid 2837 . . . . . . 7 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝐻 ∈ V)
2625ancoms 459 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑔 Fn 𝐵) → 𝐻 ∈ V)
2715, 26sylan2 593 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑔:𝐵1-1𝐴) → 𝐻 ∈ V)
28273adant2 1131 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 ∈ V)
29 sbthfilem.2 . . . . . 6 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
307, 29, 16sbthlem9 9093 . . . . 5 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
31303adant1 1130 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
32 f1oen3g 8964 . . . 4 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
3328, 31, 32syl2anc 584 . . 3 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
3433exlimivv 1935 . 2 (∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
3514, 34sylbi 216 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2709  Vcvv 3474  cdif 3945  cun 3946  wss 3948   cuni 4908   class class class wbr 5148  ccnv 5675  cres 5678  cima 5679   Fn wfn 6538  1-1wf1 6540  1-1-ontowf1o 6542  cen 8938  cdom 8939  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7858  df-1o 8468  df-en 8942  df-dom 8943  df-fin 8945
This theorem is referenced by:  sbthfi  9204
  Copyright terms: Public domain W3C validator