MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthfilem Structured version   Visualization version   GIF version

Theorem sbthfilem 9112
Description: Lemma for sbthfi 9113. (Contributed by BTernaryTau, 4-Nov-2024.)
Hypotheses
Ref Expression
sbthfilem.1 𝐴 ∈ V
sbthfilem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthfilem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthfilem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthfilem ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐻   𝐴,𝑓,𝑔,𝑥   𝐵,𝑓,𝑔,𝑥
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthfilem
StepHypRef Expression
1 19.42vv 1957 . . 3 (∃𝑓𝑔(𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
2 3anass 1094 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
322exbii 1849 . . 3 (∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ ∃𝑓𝑔(𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
4 3anass 1094 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ (𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)))
5 sbthfilem.4 . . . . . . . 8 𝐵 ∈ V
65brdom 8886 . . . . . . 7 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
7 sbthfilem.1 . . . . . . . 8 𝐴 ∈ V
87brdom 8886 . . . . . . 7 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
96, 8anbi12i 628 . . . . . 6 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
10 exdistrv 1955 . . . . . 6 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
119, 10bitr4i 278 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
1211anbi2i 623 . . . 4 ((𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
134, 12bitri 275 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
141, 3, 133bitr4ri 304 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
15 f1fn 6721 . . . . . 6 (𝑔:𝐵1-1𝐴𝑔 Fn 𝐵)
16 sbthfilem.3 . . . . . . . 8 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
17 vex 3440 . . . . . . . . . 10 𝑓 ∈ V
1817resex 5980 . . . . . . . . 9 (𝑓 𝐷) ∈ V
19 fnfi 9092 . . . . . . . . . 10 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝑔 ∈ Fin)
20 cnvfi 9090 . . . . . . . . . 10 (𝑔 ∈ Fin → 𝑔 ∈ Fin)
21 resexg 5978 . . . . . . . . . 10 (𝑔 ∈ Fin → (𝑔 ↾ (𝐴 𝐷)) ∈ V)
2219, 20, 213syl 18 . . . . . . . . 9 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → (𝑔 ↾ (𝐴 𝐷)) ∈ V)
23 unexg 7679 . . . . . . . . 9 (((𝑓 𝐷) ∈ V ∧ (𝑔 ↾ (𝐴 𝐷)) ∈ V) → ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V)
2418, 22, 23sylancr 587 . . . . . . . 8 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V)
2516, 24eqeltrid 2832 . . . . . . 7 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝐻 ∈ V)
2625ancoms 458 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑔 Fn 𝐵) → 𝐻 ∈ V)
2715, 26sylan2 593 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑔:𝐵1-1𝐴) → 𝐻 ∈ V)
28273adant2 1131 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 ∈ V)
29 sbthfilem.2 . . . . . 6 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
307, 29, 16sbthlem9 9012 . . . . 5 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
31303adant1 1130 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
32 f1oen3g 8892 . . . 4 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
3328, 31, 32syl2anc 584 . . 3 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
3433exlimivv 1932 . 2 (∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
3514, 34sylbi 217 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  Vcvv 3436  cdif 3900  cun 3901  wss 3903   cuni 4858   class class class wbr 5092  ccnv 5618  cres 5621  cima 5622   Fn wfn 6477  1-1wf1 6479  1-1-ontowf1o 6481  cen 8869  cdom 8870  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-dom 8874  df-fin 8876
This theorem is referenced by:  sbthfi  9113
  Copyright terms: Public domain W3C validator