MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthfilem Structured version   Visualization version   GIF version

Theorem sbthfilem 9107
Description: Lemma for sbthfi 9108. (Contributed by BTernaryTau, 4-Nov-2024.)
Hypotheses
Ref Expression
sbthfilem.1 𝐴 ∈ V
sbthfilem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthfilem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthfilem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthfilem ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐻   𝐴,𝑓,𝑔,𝑥   𝐵,𝑓,𝑔,𝑥
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthfilem
StepHypRef Expression
1 19.42vv 1958 . . 3 (∃𝑓𝑔(𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
2 3anass 1094 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
322exbii 1850 . . 3 (∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ ∃𝑓𝑔(𝐵 ∈ Fin ∧ (𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
4 3anass 1094 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ (𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)))
5 sbthfilem.4 . . . . . . . 8 𝐵 ∈ V
65brdom 8883 . . . . . . 7 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
7 sbthfilem.1 . . . . . . . 8 𝐴 ∈ V
87brdom 8883 . . . . . . 7 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
96, 8anbi12i 628 . . . . . 6 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
10 exdistrv 1956 . . . . . 6 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
119, 10bitr4i 278 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
1211anbi2i 623 . . . 4 ((𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
134, 12bitri 275 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ (𝐵 ∈ Fin ∧ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴)))
141, 3, 133bitr4ri 304 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
15 f1fn 6720 . . . . . 6 (𝑔:𝐵1-1𝐴𝑔 Fn 𝐵)
16 sbthfilem.3 . . . . . . . 8 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
17 vex 3440 . . . . . . . . . 10 𝑓 ∈ V
1817resex 5977 . . . . . . . . 9 (𝑓 𝐷) ∈ V
19 fnfi 9087 . . . . . . . . . 10 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝑔 ∈ Fin)
20 cnvfi 9085 . . . . . . . . . 10 (𝑔 ∈ Fin → 𝑔 ∈ Fin)
21 resexg 5975 . . . . . . . . . 10 (𝑔 ∈ Fin → (𝑔 ↾ (𝐴 𝐷)) ∈ V)
2219, 20, 213syl 18 . . . . . . . . 9 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → (𝑔 ↾ (𝐴 𝐷)) ∈ V)
23 unexg 7676 . . . . . . . . 9 (((𝑓 𝐷) ∈ V ∧ (𝑔 ↾ (𝐴 𝐷)) ∈ V) → ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V)
2418, 22, 23sylancr 587 . . . . . . . 8 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V)
2516, 24eqeltrid 2835 . . . . . . 7 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝐻 ∈ V)
2625ancoms 458 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑔 Fn 𝐵) → 𝐻 ∈ V)
2715, 26sylan2 593 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑔:𝐵1-1𝐴) → 𝐻 ∈ V)
28273adant2 1131 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 ∈ V)
29 sbthfilem.2 . . . . . 6 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
307, 29, 16sbthlem9 9008 . . . . 5 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
31303adant1 1130 . . . 4 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
32 f1oen3g 8889 . . . 4 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
3328, 31, 32syl2anc 584 . . 3 ((𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
3433exlimivv 1933 . 2 (∃𝑓𝑔(𝐵 ∈ Fin ∧ 𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
3514, 34sylbi 217 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  Vcvv 3436  cdif 3894  cun 3895  wss 3897   cuni 4856   class class class wbr 5089  ccnv 5613  cres 5616  cima 5617   Fn wfn 6476  1-1wf1 6478  1-1-ontowf1o 6480  cen 8866  cdom 8867  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873
This theorem is referenced by:  sbthfi  9108
  Copyright terms: Public domain W3C validator