Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Structured version   Visualization version   GIF version

Theorem dvhopellsm 37138
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h 𝐻 = (LHyp‘𝐾)
dvhopellsm.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhopellsm.a + = (+g𝑈)
dvhopellsm.s 𝑆 = (LSubSp‘𝑈)
dvhopellsm.p = (LSSum‘𝑈)
Assertion
Ref Expression
dvhopellsm (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧, +   𝑤,𝐹,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑊,𝑦   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑧,𝑤)   𝐾(𝑧,𝑤)   𝑊(𝑧,𝑤)

Proof of Theorem dvhopellsm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 dvhopellsm.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 37131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
543ad2ant1 1164 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑈 ∈ LMod)
6 dvhopellsm.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
76lsssssubg 19279 . . . . 5 (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈))
85, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (SubGrp‘𝑈))
9 simp2 1168 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
108, 9sseldd 3799 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (SubGrp‘𝑈))
11 simp3 1169 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
128, 11sseldd 3799 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (SubGrp‘𝑈))
13 dvhopellsm.a . . . 4 + = (+g𝑈)
14 dvhopellsm.p . . . 4 = (LSSum‘𝑈)
1513, 14lsmelval 18377 . . 3 ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
1610, 12, 15syl2anc 580 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
17 eqid 2799 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
1817, 6lssss 19255 . . . . . . 7 (𝑌𝑆𝑌 ⊆ (Base‘𝑈))
19183ad2ant3 1166 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Base‘𝑈))
20 eqid 2799 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
21 eqid 2799 . . . . . . . 8 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
221, 20, 21, 2, 17dvhvbase 37108 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
23223ad2ant1 1164 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 23sseqtrd 3837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
25 relxp 5330 . . . . 5 Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))
26 relss 5411 . . . . 5 (𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑌))
2724, 25, 26mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑌)
28 oveq2 6886 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢 + 𝑣) = (𝑢 +𝑧, 𝑤⟩))
2928eqeq2d 2809 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)))
3029exopxfr2 5470 . . . 4 (Rel 𝑌 → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3127, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3231rexbidv 3233 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3317, 6lssss 19255 . . . . . . 7 (𝑋𝑆𝑋 ⊆ (Base‘𝑈))
34333ad2ant2 1165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Base‘𝑈))
3534, 23sseqtrd 3837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
36 relss 5411 . . . . 5 (𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑋))
3735, 25, 36mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑋)
38 oveq1 6885 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 +𝑧, 𝑤⟩) = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))
3938eqeq2d 2809 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4039anbi2d 623 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → ((⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
41402exbidv 2020 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4241exopxfr2 5470 . . . 4 (Rel 𝑋 → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
4337, 42syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
44 19.42vv 2053 . . . . 5 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
45 anass 461 . . . . . . . 8 (((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
46452exbii 1945 . . . . . . 7 (∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4746bicomi 216 . . . . . 6 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4847a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4944, 48syl5bbr 277 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → ((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
50492exbidv 2020 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5143, 50bitrd 271 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5216, 32, 513bitrd 297 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wex 1875  wcel 2157  wrex 3090  wss 3769  cop 4374   × cxp 5310  Rel wrel 5317  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  SubGrpcsubg 17901  LSSumclsm 18362  LModclmod 19181  LSubSpclss 19250  HLchlt 35371  LHypclh 36005  LTrncltrn 36122  TEndoctendo 36773  DVecHcdvh 37099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-undef 7637  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-0g 16417  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-lsm 18364  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-drng 19067  df-lmod 19183  df-lss 19251  df-lvec 19424  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180  df-tendo 36776  df-edring 36778  df-dvech 37100
This theorem is referenced by:  diblsmopel  37192  dihopelvalcpre  37269  xihopellsmN  37275  dihopellsm  37276
  Copyright terms: Public domain W3C validator