Step | Hyp | Ref
| Expression |
1 | | dvhopellsm.h |
. . . . . . 7
β’ π» = (LHypβπΎ) |
2 | | dvhopellsm.u |
. . . . . . 7
β’ π = ((DVecHβπΎ)βπ) |
3 | | id 22 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π») β (πΎ β HL β§ π β π»)) |
4 | 1, 2, 3 | dvhlmod 39969 |
. . . . . 6
β’ ((πΎ β HL β§ π β π») β π β LMod) |
5 | 4 | 3ad2ant1 1133 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β LMod) |
6 | | dvhopellsm.s |
. . . . . 6
β’ π = (LSubSpβπ) |
7 | 6 | lsssssubg 20561 |
. . . . 5
β’ (π β LMod β π β (SubGrpβπ)) |
8 | 5, 7 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β (SubGrpβπ)) |
9 | | simp2 1137 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β π) |
10 | 8, 9 | sseldd 3982 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β (SubGrpβπ)) |
11 | | simp3 1138 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β π) |
12 | 8, 11 | sseldd 3982 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β (SubGrpβπ)) |
13 | | dvhopellsm.a |
. . . 4
β’ + =
(+gβπ) |
14 | | dvhopellsm.p |
. . . 4
β’ β =
(LSSumβπ) |
15 | 13, 14 | lsmelval 19511 |
. . 3
β’ ((π β (SubGrpβπ) β§ π β (SubGrpβπ)) β (β¨πΉ, πβ© β (π β π) β βπ’ β π βπ£ β π β¨πΉ, πβ© = (π’ + π£))) |
16 | 10, 12, 15 | syl2anc 584 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (β¨πΉ, πβ© β (π β π) β βπ’ β π βπ£ β π β¨πΉ, πβ© = (π’ + π£))) |
17 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
18 | 17, 6 | lssss 20539 |
. . . . . . 7
β’ (π β π β π β (Baseβπ)) |
19 | 18 | 3ad2ant3 1135 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β (Baseβπ)) |
20 | | eqid 2732 |
. . . . . . . 8
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
21 | | eqid 2732 |
. . . . . . . 8
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
22 | 1, 20, 21, 2, 17 | dvhvbase 39946 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π») β (Baseβπ) = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
23 | 22 | 3ad2ant1 1133 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (Baseβπ) = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
24 | 19, 23 | sseqtrd 4021 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
25 | | relxp 5693 |
. . . . 5
β’ Rel
(((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) |
26 | | relss 5779 |
. . . . 5
β’ (π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) β (Rel (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) β Rel π)) |
27 | 24, 25, 26 | mpisyl 21 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β Rel π) |
28 | | oveq2 7413 |
. . . . . 6
β’ (π£ = β¨π§, π€β© β (π’ + π£) = (π’ + β¨π§, π€β©)) |
29 | 28 | eqeq2d 2743 |
. . . . 5
β’ (π£ = β¨π§, π€β© β (β¨πΉ, πβ© = (π’ + π£) β β¨πΉ, πβ© = (π’ + β¨π§, π€β©))) |
30 | 29 | exopxfr2 5842 |
. . . 4
β’ (Rel
π β (βπ£ β π β¨πΉ, πβ© = (π’ + π£) β βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)))) |
31 | 27, 30 | syl 17 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (βπ£ β π β¨πΉ, πβ© = (π’ + π£) β βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)))) |
32 | 31 | rexbidv 3178 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (βπ’ β π βπ£ β π β¨πΉ, πβ© = (π’ + π£) β βπ’ β π βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)))) |
33 | 17, 6 | lssss 20539 |
. . . . . . 7
β’ (π β π β π β (Baseβπ)) |
34 | 33 | 3ad2ant2 1134 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β (Baseβπ)) |
35 | 34, 23 | sseqtrd 4021 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
36 | | relss 5779 |
. . . . 5
β’ (π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) β (Rel (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) β Rel π)) |
37 | 35, 25, 36 | mpisyl 21 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β Rel π) |
38 | | oveq1 7412 |
. . . . . . . 8
β’ (π’ = β¨π₯, π¦β© β (π’ + β¨π§, π€β©) = (β¨π₯, π¦β© + β¨π§, π€β©)) |
39 | 38 | eqeq2d 2743 |
. . . . . . 7
β’ (π’ = β¨π₯, π¦β© β (β¨πΉ, πβ© = (π’ + β¨π§, π€β©) β β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))) |
40 | 39 | anbi2d 629 |
. . . . . 6
β’ (π’ = β¨π₯, π¦β© β ((β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)) β (β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
41 | 40 | 2exbidv 1927 |
. . . . 5
β’ (π’ = β¨π₯, π¦β© β (βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)) β βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
42 | 41 | exopxfr2 5842 |
. . . 4
β’ (Rel
π β (βπ’ β π βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)) β βπ₯βπ¦(β¨π₯, π¦β© β π β§ βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))))) |
43 | 37, 42 | syl 17 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (βπ’ β π βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)) β βπ₯βπ¦(β¨π₯, π¦β© β π β§ βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))))) |
44 | | 19.42vv 1961 |
. . . . 5
β’
(βπ§βπ€(β¨π₯, π¦β© β π β§ (β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))) β (β¨π₯, π¦β© β π β§ βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
45 | | anass 469 |
. . . . . . . 8
β’
(((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)) β (β¨π₯, π¦β© β π β§ (β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
46 | 45 | 2exbii 1851 |
. . . . . . 7
β’
(βπ§βπ€((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)) β βπ§βπ€(β¨π₯, π¦β© β π β§ (β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
47 | 46 | bicomi 223 |
. . . . . 6
β’
(βπ§βπ€(β¨π₯, π¦β© β π β§ (β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))) β βπ§βπ€((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))) |
48 | 47 | a1i 11 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (βπ§βπ€(β¨π₯, π¦β© β π β§ (β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))) β βπ§βπ€((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
49 | 44, 48 | bitr3id 284 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((β¨π₯, π¦β© β π β§ βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))) β βπ§βπ€((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
50 | 49 | 2exbidv 1927 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (βπ₯βπ¦(β¨π₯, π¦β© β π β§ βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©))) β βπ₯βπ¦βπ§βπ€((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
51 | 43, 50 | bitrd 278 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (βπ’ β π βπ§βπ€(β¨π§, π€β© β π β§ β¨πΉ, πβ© = (π’ + β¨π§, π€β©)) β βπ₯βπ¦βπ§βπ€((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |
52 | 16, 32, 51 | 3bitrd 304 |
1
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (β¨πΉ, πβ© β (π β π) β βπ₯βπ¦βπ§βπ€((β¨π₯, π¦β© β π β§ β¨π§, π€β© β π) β§ β¨πΉ, πβ© = (β¨π₯, π¦β© + β¨π§, π€β©)))) |