MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpores Structured version   Visualization version   GIF version

Theorem elrnmpores 7389
Description: Membership in the range of a restricted operation class abstraction. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elrnmpores (𝐷𝑉 → (𝐷 ∈ ran (𝐹𝑅) ↔ ∃𝑥𝐴𝑦𝐵 (𝐷 = 𝐶𝑥𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elrnmpores
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . . . . 6 (𝑧 = 𝐷 → (𝑧 = 𝐶𝐷 = 𝐶))
21anbi1d 629 . . . . 5 (𝑧 = 𝐷 → ((𝑧 = 𝐶𝑥𝑅𝑦) ↔ (𝐷 = 𝐶𝑥𝑅𝑦)))
32anbi2d 628 . . . 4 (𝑧 = 𝐷 → (((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐷 = 𝐶𝑥𝑅𝑦))))
432exbidv 1928 . . 3 (𝑧 = 𝐷 → (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦)) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐷 = 𝐶𝑥𝑅𝑦))))
5 an12 641 . . . . . . . . . 10 ((𝑝𝑅 ∧ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑝𝑅 ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))))
6 an12 641 . . . . . . . . . . . 12 ((𝑝𝑅 ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑝𝑅𝑧 = 𝐶)))
7 ancom 460 . . . . . . . . . . . . . 14 ((𝑧 = 𝐶𝑝𝑅) ↔ (𝑝𝑅𝑧 = 𝐶))
8 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
9 df-br 5071 . . . . . . . . . . . . . . . 16 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
108, 9bitr4di 288 . . . . . . . . . . . . . . 15 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝𝑅𝑥𝑅𝑦))
1110anbi2d 628 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑧 = 𝐶𝑝𝑅) ↔ (𝑧 = 𝐶𝑥𝑅𝑦)))
127, 11bitr3id 284 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑝𝑅𝑧 = 𝐶) ↔ (𝑧 = 𝐶𝑥𝑅𝑦)))
1312anbi2d 628 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (((𝑥𝐴𝑦𝐵) ∧ (𝑝𝑅𝑧 = 𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))))
146, 13syl5bb 282 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑝𝑅 ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))))
1514pm5.32i 574 . . . . . . . . . 10 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑝𝑅 ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))))
165, 15bitri 274 . . . . . . . . 9 ((𝑝𝑅 ∧ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))))
17162exbii 1852 . . . . . . . 8 (∃𝑥𝑦(𝑝𝑅 ∧ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))) ↔ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))))
18 19.42vv 1962 . . . . . . . 8 (∃𝑥𝑦(𝑝𝑅 ∧ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))) ↔ (𝑝𝑅 ∧ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))))
1917, 18bitr3i 276 . . . . . . 7 (∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))) ↔ (𝑝𝑅 ∧ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))))
2019opabbii 5137 . . . . . 6 {⟨𝑝, 𝑧⟩ ∣ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦)))} = {⟨𝑝, 𝑧⟩ ∣ (𝑝𝑅 ∧ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))}
21 dfoprab2 7311 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))} = {⟨𝑝, 𝑧⟩ ∣ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦)))}
22 rngop.1 . . . . . . . . 9 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
23 df-mpo 7260 . . . . . . . . 9 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
24 dfoprab2 7311 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨𝑝, 𝑧⟩ ∣ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))}
2522, 23, 243eqtri 2770 . . . . . . . 8 𝐹 = {⟨𝑝, 𝑧⟩ ∣ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))}
2625reseq1i 5876 . . . . . . 7 (𝐹𝑅) = ({⟨𝑝, 𝑧⟩ ∣ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))} ↾ 𝑅)
27 resopab 5931 . . . . . . 7 ({⟨𝑝, 𝑧⟩ ∣ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))} ↾ 𝑅) = {⟨𝑝, 𝑧⟩ ∣ (𝑝𝑅 ∧ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))}
2826, 27eqtri 2766 . . . . . 6 (𝐹𝑅) = {⟨𝑝, 𝑧⟩ ∣ (𝑝𝑅 ∧ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))}
2920, 21, 283eqtr4ri 2777 . . . . 5 (𝐹𝑅) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))}
3029rneqi 5835 . . . 4 ran (𝐹𝑅) = ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))}
31 rnoprab 7356 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))} = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))}
3230, 31eqtri 2766 . . 3 ran (𝐹𝑅) = {𝑧 ∣ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑧 = 𝐶𝑥𝑅𝑦))}
334, 32elab2g 3604 . 2 (𝐷𝑉 → (𝐷 ∈ ran (𝐹𝑅) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐷 = 𝐶𝑥𝑅𝑦))))
34 r2ex 3231 . 2 (∃𝑥𝐴𝑦𝐵 (𝐷 = 𝐶𝑥𝑅𝑦) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐷 = 𝐶𝑥𝑅𝑦)))
3533, 34bitr4di 288 1 (𝐷𝑉 → (𝐷 ∈ ran (𝐹𝑅) ↔ ∃𝑥𝐴𝑦𝐵 (𝐷 = 𝐶𝑥𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064  cop 4564   class class class wbr 5070  {copab 5132  ran crn 5581  cres 5582  {coprab 7256  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-oprab 7259  df-mpo 7260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator