![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtrfil | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 9027). (Contributed by BTernaryTau, 24-Nov-2024.) |
Ref | Expression |
---|---|
domtrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8969 | . . . . 5 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5735 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → 𝐶 ∈ V) |
3 | 2 | anim2i 616 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
4 | 3 | 3adant2 1129 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
5 | brdomi 8978 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑔 𝑔:𝐴–1-1→𝐵) | |
6 | brdomi 8978 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
7 | exdistrv 1952 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) | |
8 | 19.42vv 1954 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) ↔ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶))) | |
9 | f1co 6805 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝑔:𝐴–1-1→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) | |
10 | 9 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) |
11 | f1domfi2 9209 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
12 | 11 | 3expa 1116 | . . . . . . . . 9 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
13 | 10, 12 | sylan2 592 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
14 | 13 | exlimivv 1928 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
15 | 8, 14 | sylbir 234 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
16 | 7, 15 | sylan2br 594 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
17 | 16 | 3impb 1113 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶) → 𝐴 ≼ 𝐶) |
18 | 6, 17 | syl3an3 1163 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
19 | 5, 18 | syl3an2 1162 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
20 | 4, 19 | syld3an1 1408 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∃wex 1774 ∈ wcel 2099 Vcvv 3471 class class class wbr 5148 ∘ ccom 5682 –1-1→wf1 6545 ≼ cdom 8961 Fincfn 8963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-om 7871 df-1o 8486 df-en 8964 df-dom 8965 df-fin 8967 |
This theorem is referenced by: domtrfi 9220 sdomdomtrfi 9228 domsdomtrfi 9229 |
Copyright terms: Public domain | W3C validator |