![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtrfil | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 9005). (Contributed by BTernaryTau, 24-Nov-2024.) |
Ref | Expression |
---|---|
domtrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8947 | . . . . 5 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5726 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → 𝐶 ∈ V) |
3 | 2 | anim2i 616 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
4 | 3 | 3adant2 1128 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
5 | brdomi 8956 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑔 𝑔:𝐴–1-1→𝐵) | |
6 | brdomi 8956 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
7 | exdistrv 1951 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) | |
8 | 19.42vv 1953 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) ↔ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶))) | |
9 | f1co 6793 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝑔:𝐴–1-1→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) | |
10 | 9 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) |
11 | f1domfi2 9187 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
12 | 11 | 3expa 1115 | . . . . . . . . 9 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
13 | 10, 12 | sylan2 592 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
14 | 13 | exlimivv 1927 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
15 | 8, 14 | sylbir 234 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
16 | 7, 15 | sylan2br 594 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
17 | 16 | 3impb 1112 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶) → 𝐴 ≼ 𝐶) |
18 | 6, 17 | syl3an3 1162 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
19 | 5, 18 | syl3an2 1161 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
20 | 4, 19 | syld3an1 1407 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 class class class wbr 5141 ∘ ccom 5673 –1-1→wf1 6534 ≼ cdom 8939 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-om 7853 df-1o 8467 df-en 8942 df-dom 8943 df-fin 8945 |
This theorem is referenced by: domtrfi 9198 sdomdomtrfi 9206 domsdomtrfi 9207 |
Copyright terms: Public domain | W3C validator |