MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtrfil Structured version   Visualization version   GIF version

Theorem domtrfil 8952
Description: Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 8768). (Contributed by BTernaryTau, 24-Nov-2024.)
Assertion
Ref Expression
domtrfil ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domtrfil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8714 . . . . 5 Rel ≼
21brrelex2i 5644 . . . 4 (𝐵𝐶𝐶 ∈ V)
32anim2i 617 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V))
433adant2 1130 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V))
5 brdomi 8723 . . 3 (𝐴𝐵 → ∃𝑔 𝑔:𝐴1-1𝐵)
6 brdomi 8723 . . . 4 (𝐵𝐶 → ∃𝑓 𝑓:𝐵1-1𝐶)
7 exdistrv 1963 . . . . . 6 (∃𝑔𝑓(𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶) ↔ (∃𝑔 𝑔:𝐴1-1𝐵 ∧ ∃𝑓 𝑓:𝐵1-1𝐶))
8 19.42vv 1965 . . . . . . 7 (∃𝑔𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) ↔ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔𝑓(𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)))
9 f1co 6679 . . . . . . . . . 10 ((𝑓:𝐵1-1𝐶𝑔:𝐴1-1𝐵) → (𝑓𝑔):𝐴1-1𝐶)
109ancoms 459 . . . . . . . . 9 ((𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶) → (𝑓𝑔):𝐴1-1𝐶)
11 f1domfi2 8942 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐶 ∈ V ∧ (𝑓𝑔):𝐴1-1𝐶) → 𝐴𝐶)
12113expa 1117 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑓𝑔):𝐴1-1𝐶) → 𝐴𝐶)
1310, 12sylan2 593 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
1413exlimivv 1939 . . . . . . 7 (∃𝑔𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
158, 14sylbir 234 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔𝑓(𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
167, 15sylan2br 595 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (∃𝑔 𝑔:𝐴1-1𝐵 ∧ ∃𝑓 𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
17163impb 1114 . . . 4 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴1-1𝐵 ∧ ∃𝑓 𝑓:𝐵1-1𝐶) → 𝐴𝐶)
186, 17syl3an3 1164 . . 3 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴1-1𝐵𝐵𝐶) → 𝐴𝐶)
195, 18syl3an2 1163 . 2 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
204, 19syld3an1 1409 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wex 1786  wcel 2110  Vcvv 3431   class class class wbr 5079  ccom 5593  1-1wf1 6428  cdom 8706  Fincfn 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-om 7702  df-1o 8282  df-en 8709  df-dom 8710  df-fin 8712
This theorem is referenced by:  domtrfi  8953  sdomdomtrfi  8961  domsdomtrfi  8962
  Copyright terms: Public domain W3C validator