MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtrfil Structured version   Visualization version   GIF version

Theorem domtrfil 9195
Description: Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 9003). (Contributed by BTernaryTau, 24-Nov-2024.)
Assertion
Ref Expression
domtrfil ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domtrfil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8945 . . . . 5 Rel ≼
21brrelex2i 5734 . . . 4 (𝐵𝐶𝐶 ∈ V)
32anim2i 618 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V))
433adant2 1132 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V))
5 brdomi 8954 . . 3 (𝐴𝐵 → ∃𝑔 𝑔:𝐴1-1𝐵)
6 brdomi 8954 . . . 4 (𝐵𝐶 → ∃𝑓 𝑓:𝐵1-1𝐶)
7 exdistrv 1960 . . . . . 6 (∃𝑔𝑓(𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶) ↔ (∃𝑔 𝑔:𝐴1-1𝐵 ∧ ∃𝑓 𝑓:𝐵1-1𝐶))
8 19.42vv 1962 . . . . . . 7 (∃𝑔𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) ↔ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔𝑓(𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)))
9 f1co 6800 . . . . . . . . . 10 ((𝑓:𝐵1-1𝐶𝑔:𝐴1-1𝐵) → (𝑓𝑔):𝐴1-1𝐶)
109ancoms 460 . . . . . . . . 9 ((𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶) → (𝑓𝑔):𝐴1-1𝐶)
11 f1domfi2 9185 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐶 ∈ V ∧ (𝑓𝑔):𝐴1-1𝐶) → 𝐴𝐶)
12113expa 1119 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑓𝑔):𝐴1-1𝐶) → 𝐴𝐶)
1310, 12sylan2 594 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
1413exlimivv 1936 . . . . . . 7 (∃𝑔𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
158, 14sylbir 234 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔𝑓(𝑔:𝐴1-1𝐵𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
167, 15sylan2br 596 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (∃𝑔 𝑔:𝐴1-1𝐵 ∧ ∃𝑓 𝑓:𝐵1-1𝐶)) → 𝐴𝐶)
17163impb 1116 . . . 4 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴1-1𝐵 ∧ ∃𝑓 𝑓:𝐵1-1𝐶) → 𝐴𝐶)
186, 17syl3an3 1166 . . 3 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴1-1𝐵𝐵𝐶) → 𝐴𝐶)
195, 18syl3an2 1165 . 2 (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
204, 19syld3an1 1411 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wex 1782  wcel 2107  Vcvv 3475   class class class wbr 5149  ccom 5681  1-1wf1 6541  cdom 8937  Fincfn 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-dom 8941  df-fin 8943
This theorem is referenced by:  domtrfi  9196  sdomdomtrfi  9204  domsdomtrfi  9205
  Copyright terms: Public domain W3C validator