Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domtrfil | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 8785). (Contributed by BTernaryTau, 24-Nov-2024.) |
Ref | Expression |
---|---|
domtrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8731 | . . . . 5 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5645 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → 𝐶 ∈ V) |
3 | 2 | anim2i 617 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
4 | 3 | 3adant2 1130 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
5 | brdomi 8740 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑔 𝑔:𝐴–1-1→𝐵) | |
6 | brdomi 8740 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
7 | exdistrv 1963 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) | |
8 | 19.42vv 1965 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) ↔ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶))) | |
9 | f1co 6680 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝑔:𝐴–1-1→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) | |
10 | 9 | ancoms 459 | . . . . . . . . 9 ⊢ ((𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) |
11 | f1domfi2 8959 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
12 | 11 | 3expa 1117 | . . . . . . . . 9 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
13 | 10, 12 | sylan2 593 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
14 | 13 | exlimivv 1939 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
15 | 8, 14 | sylbir 234 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
16 | 7, 15 | sylan2br 595 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
17 | 16 | 3impb 1114 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶) → 𝐴 ≼ 𝐶) |
18 | 6, 17 | syl3an3 1164 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
19 | 5, 18 | syl3an2 1163 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
20 | 4, 19 | syld3an1 1409 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 class class class wbr 5079 ∘ ccom 5594 –1-1→wf1 6429 ≼ cdom 8723 Fincfn 8725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-om 7708 df-1o 8289 df-en 8726 df-dom 8727 df-fin 8729 |
This theorem is referenced by: domtrfi 8970 sdomdomtrfi 8978 domsdomtrfi 8979 |
Copyright terms: Public domain | W3C validator |