![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtrfil | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 9003). (Contributed by BTernaryTau, 24-Nov-2024.) |
Ref | Expression |
---|---|
domtrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8945 | . . . . 5 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5734 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → 𝐶 ∈ V) |
3 | 2 | anim2i 618 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
4 | 3 | 3adant2 1132 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) |
5 | brdomi 8954 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑔 𝑔:𝐴–1-1→𝐵) | |
6 | brdomi 8954 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
7 | exdistrv 1960 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) | |
8 | 19.42vv 1962 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) ↔ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶))) | |
9 | f1co 6800 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝑔:𝐴–1-1→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) | |
10 | 9 | ancoms 460 | . . . . . . . . 9 ⊢ ((𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) |
11 | f1domfi2 9185 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
12 | 11 | 3expa 1119 | . . . . . . . . 9 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
13 | 10, 12 | sylan2 594 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
14 | 13 | exlimivv 1936 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
15 | 8, 14 | sylbir 234 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
16 | 7, 15 | sylan2br 596 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
17 | 16 | 3impb 1116 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶) → 𝐴 ≼ 𝐶) |
18 | 6, 17 | syl3an3 1166 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
19 | 5, 18 | syl3an2 1165 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
20 | 4, 19 | syld3an1 1411 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 ∘ ccom 5681 –1-1→wf1 6541 ≼ cdom 8937 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-en 8940 df-dom 8941 df-fin 8943 |
This theorem is referenced by: domtrfi 9196 sdomdomtrfi 9204 domsdomtrfi 9205 |
Copyright terms: Public domain | W3C validator |