|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > domtrfil | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 9048). (Contributed by BTernaryTau, 24-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| domtrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reldom 8992 | . . . . 5 ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i 5741 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → 𝐶 ∈ V) | 
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) | 
| 4 | 3 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ∈ Fin ∧ 𝐶 ∈ V)) | 
| 5 | brdomi 9000 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑔 𝑔:𝐴–1-1→𝐵) | |
| 6 | brdomi 9000 | . . . 4 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
| 7 | exdistrv 1954 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) | |
| 8 | 19.42vv 1956 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) ↔ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶))) | |
| 9 | f1co 6814 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝑔:𝐴–1-1→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) | |
| 10 | 9 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) | 
| 11 | f1domfi2 9223 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ∈ V ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
| 12 | 11 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | 
| 13 | 10, 12 | sylan2 593 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) | 
| 14 | 13 | exlimivv 1931 | . . . . . . 7 ⊢ (∃𝑔∃𝑓((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) | 
| 15 | 8, 14 | sylbir 235 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) | 
| 16 | 7, 15 | sylan2br 595 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) | 
| 17 | 16 | 3impb 1114 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶) → 𝐴 ≼ 𝐶) | 
| 18 | 6, 17 | syl3an3 1165 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | 
| 19 | 5, 18 | syl3an2 1164 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐶 ∈ V) ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | 
| 20 | 4, 19 | syld3an1 1411 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 ∘ ccom 5688 –1-1→wf1 6557 ≼ cdom 8984 Fincfn 8986 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1o 8507 df-en 8987 df-dom 8988 df-fin 8990 | 
| This theorem is referenced by: domtrfi 9234 sdomdomtrfi 9242 domsdomtrfi 9243 | 
| Copyright terms: Public domain | W3C validator |