![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrsubgr | Structured version Visualization version GIF version |
Description: The subgraph of an acyclic graph is also acyclic. (Contributed by BTernaryTau, 23-Oct-2023.) |
Ref | Expression |
---|---|
acycgrsubgr | ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ AcyclicGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcycl 34739 | . . . . . 6 ⊢ (𝑆 SubGraph 𝐺 → (𝑓(Cycles‘𝑆)𝑝 → 𝑓(Cycles‘𝐺)𝑝)) | |
2 | 1 | anim1d 610 | . . . . 5 ⊢ (𝑆 SubGraph 𝐺 → ((𝑓(Cycles‘𝑆)𝑝 ∧ 𝑓 ≠ ∅) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
3 | 2 | 2eximdv 1915 | . . . 4 ⊢ (𝑆 SubGraph 𝐺 → (∃𝑓∃𝑝(𝑓(Cycles‘𝑆)𝑝 ∧ 𝑓 ≠ ∅) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
4 | 3 | con3d 152 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑆)𝑝 ∧ 𝑓 ≠ ∅))) |
5 | subgrv 29076 | . . . 4 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) | |
6 | isacycgr 34749 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
7 | 5, 6 | simpl2im 503 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
8 | 5 | simpld 494 | . . . 4 ⊢ (𝑆 SubGraph 𝐺 → 𝑆 ∈ V) |
9 | isacycgr 34749 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑆)𝑝 ∧ 𝑓 ≠ ∅))) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑆)𝑝 ∧ 𝑓 ≠ ∅))) |
11 | 4, 7, 10 | 3imtr4d 294 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝐺 ∈ AcyclicGraph → 𝑆 ∈ AcyclicGraph)) |
12 | 11 | impcom 407 | 1 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ AcyclicGraph) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 ∅c0 4318 class class class wbr 5142 ‘cfv 6542 SubGraph csubgr 29073 Cyclesccycls 29592 AcyclicGraphcacycgr 34746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-hash 14316 df-word 14491 df-subgr 29074 df-wlks 29406 df-trls 29499 df-pths 29523 df-cycls 29594 df-acycgr 34747 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |