MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn2 Structured version   Visualization version   GIF version

Theorem pmtrrn2 18580
Description: For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn2 (𝐹𝑅 → ∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦

Proof of Theorem pmtrrn2
StepHypRef Expression
1 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . . 7 𝑅 = ran 𝑇
3 eqid 2798 . . . . . . 7 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 18578 . . . . . 6 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 498 . . . . 5 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
65simp3d 1141 . . . 4 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
7 en2 8738 . . . 4 (dom (𝐹 ∖ I ) ≈ 2o → ∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦})
86, 7syl 17 . . 3 (𝐹𝑅 → ∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦})
95simp2d 1140 . . . . . . 7 (𝐹𝑅 → dom (𝐹 ∖ I ) ⊆ 𝐷)
104simprd 499 . . . . . . 7 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
119, 6, 10jca32 519 . . . . . 6 (𝐹𝑅 → (dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ (dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I )))))
12 sseq1 3940 . . . . . . 7 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (dom (𝐹 ∖ I ) ⊆ 𝐷 ↔ {𝑥, 𝑦} ⊆ 𝐷))
13 breq1 5033 . . . . . . . 8 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (dom (𝐹 ∖ I ) ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
14 fveq2 6645 . . . . . . . . 9 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (𝑇‘dom (𝐹 ∖ I )) = (𝑇‘{𝑥, 𝑦}))
1514eqeq2d 2809 . . . . . . . 8 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (𝐹 = (𝑇‘dom (𝐹 ∖ I )) ↔ 𝐹 = (𝑇‘{𝑥, 𝑦})))
1613, 15anbi12d 633 . . . . . . 7 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I ))) ↔ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦}))))
1712, 16anbi12d 633 . . . . . 6 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ (dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I )))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})))))
1811, 17syl5ibcom 248 . . . . 5 (𝐹𝑅 → (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})))))
19 vex 3444 . . . . . . . 8 𝑥 ∈ V
20 vex 3444 . . . . . . . 8 𝑦 ∈ V
2119, 20prss 4713 . . . . . . 7 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
2221bicomi 227 . . . . . 6 ({𝑥, 𝑦} ⊆ 𝐷 ↔ (𝑥𝐷𝑦𝐷))
23 pr2ne 9416 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
2423el2v 3448 . . . . . . 7 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
2524anbi1i 626 . . . . . 6 (({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})) ↔ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
2622, 25anbi12i 629 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦}))) ↔ ((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
2718, 26syl6ib 254 . . . 4 (𝐹𝑅 → (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))))
28272eximdv 1920 . . 3 (𝐹𝑅 → (∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))))
298, 28mpd 15 . 2 (𝐹𝑅 → ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
30 r2ex 3262 . 2 (∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})) ↔ ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
3129, 30sylibr 237 1 (𝐹𝑅 → ∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cdif 3878  wss 3881  {cpr 4527   class class class wbr 5030   I cid 5424  dom cdm 5519  ran crn 5520  cfv 6324  2oc2o 8079  cen 8489  pmTrspcpmtr 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pmtr 18562
This theorem is referenced by:  mdetunilem7  21223
  Copyright terms: Public domain W3C validator