MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn2 Structured version   Visualization version   GIF version

Theorem pmtrrn2 18983
Description: For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn2 (𝐹𝑅 → ∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦

Proof of Theorem pmtrrn2
StepHypRef Expression
1 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . . 7 𝑅 = ran 𝑇
3 eqid 2738 . . . . . . 7 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 18981 . . . . . 6 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 494 . . . . 5 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
65simp3d 1142 . . . 4 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
7 en2 8983 . . . 4 (dom (𝐹 ∖ I ) ≈ 2o → ∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦})
86, 7syl 17 . . 3 (𝐹𝑅 → ∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦})
95simp2d 1141 . . . . . . 7 (𝐹𝑅 → dom (𝐹 ∖ I ) ⊆ 𝐷)
104simprd 495 . . . . . . 7 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
119, 6, 10jca32 515 . . . . . 6 (𝐹𝑅 → (dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ (dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I )))))
12 sseq1 3942 . . . . . . 7 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (dom (𝐹 ∖ I ) ⊆ 𝐷 ↔ {𝑥, 𝑦} ⊆ 𝐷))
13 breq1 5073 . . . . . . . 8 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (dom (𝐹 ∖ I ) ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
14 fveq2 6756 . . . . . . . . 9 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (𝑇‘dom (𝐹 ∖ I )) = (𝑇‘{𝑥, 𝑦}))
1514eqeq2d 2749 . . . . . . . 8 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (𝐹 = (𝑇‘dom (𝐹 ∖ I )) ↔ 𝐹 = (𝑇‘{𝑥, 𝑦})))
1613, 15anbi12d 630 . . . . . . 7 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I ))) ↔ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦}))))
1712, 16anbi12d 630 . . . . . 6 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ (dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I )))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})))))
1811, 17syl5ibcom 244 . . . . 5 (𝐹𝑅 → (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})))))
19 vex 3426 . . . . . . . 8 𝑥 ∈ V
20 vex 3426 . . . . . . . 8 𝑦 ∈ V
2119, 20prss 4750 . . . . . . 7 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
2221bicomi 223 . . . . . 6 ({𝑥, 𝑦} ⊆ 𝐷 ↔ (𝑥𝐷𝑦𝐷))
23 pr2ne 9692 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
2423el2v 3430 . . . . . . 7 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
2524anbi1i 623 . . . . . 6 (({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})) ↔ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
2622, 25anbi12i 626 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦}))) ↔ ((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
2718, 26syl6ib 250 . . . 4 (𝐹𝑅 → (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))))
28272eximdv 1923 . . 3 (𝐹𝑅 → (∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))))
298, 28mpd 15 . 2 (𝐹𝑅 → ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
30 r2ex 3231 . 2 (∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})) ↔ ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
3129, 30sylibr 233 1 (𝐹𝑅 → ∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  {cpr 4560   class class class wbr 5070   I cid 5479  dom cdm 5580  ran crn 5581  cfv 6418  2oc2o 8261  cen 8688  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pmtr 18965
This theorem is referenced by:  mdetunilem7  21675
  Copyright terms: Public domain W3C validator