MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn2 Structured version   Visualization version   GIF version

Theorem pmtrrn2 19049
Description: For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn2 (𝐹𝑅 → ∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦

Proof of Theorem pmtrrn2
StepHypRef Expression
1 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . . 7 𝑅 = ran 𝑇
3 eqid 2739 . . . . . . 7 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19047 . . . . . 6 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 494 . . . . 5 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
65simp3d 1142 . . . 4 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
7 en2 9014 . . . 4 (dom (𝐹 ∖ I ) ≈ 2o → ∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦})
86, 7syl 17 . . 3 (𝐹𝑅 → ∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦})
95simp2d 1141 . . . . . . 7 (𝐹𝑅 → dom (𝐹 ∖ I ) ⊆ 𝐷)
104simprd 495 . . . . . . 7 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
119, 6, 10jca32 515 . . . . . 6 (𝐹𝑅 → (dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ (dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I )))))
12 sseq1 3950 . . . . . . 7 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (dom (𝐹 ∖ I ) ⊆ 𝐷 ↔ {𝑥, 𝑦} ⊆ 𝐷))
13 breq1 5081 . . . . . . . 8 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (dom (𝐹 ∖ I ) ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
14 fveq2 6768 . . . . . . . . 9 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (𝑇‘dom (𝐹 ∖ I )) = (𝑇‘{𝑥, 𝑦}))
1514eqeq2d 2750 . . . . . . . 8 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → (𝐹 = (𝑇‘dom (𝐹 ∖ I )) ↔ 𝐹 = (𝑇‘{𝑥, 𝑦})))
1613, 15anbi12d 630 . . . . . . 7 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I ))) ↔ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦}))))
1712, 16anbi12d 630 . . . . . 6 (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ (dom (𝐹 ∖ I ) ≈ 2o𝐹 = (𝑇‘dom (𝐹 ∖ I )))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})))))
1811, 17syl5ibcom 244 . . . . 5 (𝐹𝑅 → (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})))))
19 vex 3434 . . . . . . . 8 𝑥 ∈ V
20 vex 3434 . . . . . . . 8 𝑦 ∈ V
2119, 20prss 4758 . . . . . . 7 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
2221bicomi 223 . . . . . 6 ({𝑥, 𝑦} ⊆ 𝐷 ↔ (𝑥𝐷𝑦𝐷))
23 pr2ne 9745 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
2423el2v 3438 . . . . . . 7 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
2524anbi1i 623 . . . . . 6 (({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦})) ↔ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
2622, 25anbi12i 626 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐷 ∧ ({𝑥, 𝑦} ≈ 2o𝐹 = (𝑇‘{𝑥, 𝑦}))) ↔ ((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
2718, 26syl6ib 250 . . . 4 (𝐹𝑅 → (dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))))
28272eximdv 1925 . . 3 (𝐹𝑅 → (∃𝑥𝑦dom (𝐹 ∖ I ) = {𝑥, 𝑦} → ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))))
298, 28mpd 15 . 2 (𝐹𝑅 → ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
30 r2ex 3233 . 2 (∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})) ↔ ∃𝑥𝑦((𝑥𝐷𝑦𝐷) ∧ (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦}))))
3129, 30sylibr 233 1 (𝐹𝑅 → ∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝐹 = (𝑇‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wex 1785  wcel 2109  wne 2944  wrex 3066  Vcvv 3430  cdif 3888  wss 3891  {cpr 4568   class class class wbr 5078   I cid 5487  dom cdm 5588  ran crn 5589  cfv 6430  2oc2o 8275  cen 8704  pmTrspcpmtr 19030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-om 7701  df-1o 8281  df-2o 8282  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pmtr 19031
This theorem is referenced by:  mdetunilem7  21748
  Copyright terms: Public domain W3C validator