Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem5 Structured version   Visualization version   GIF version

Theorem pellexlem5 40358
Description: Lemma for pellex 40360. Invoking fiphp3d 40344, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellexlem5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem4 40357 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ)
2 fzfi 13545 . . . 4 (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin
3 diffi 8906 . . . 4 ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
42, 3mp1i 13 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
5 elopab 5408 . . . . 5 (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
6 fveq2 6717 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → (1st𝑎) = (1st ‘⟨𝑦, 𝑧⟩))
76oveq1d 7228 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → ((1st𝑎)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
8 fveq2 6717 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑦, 𝑧⟩ → (2nd𝑎) = (2nd ‘⟨𝑦, 𝑧⟩))
98oveq1d 7228 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → ((2nd𝑎)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
109oveq2d 7229 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
117, 10oveq12d 7231 . . . . . . . . . 10 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
12 vex 3412 . . . . . . . . . . . . 13 𝑦 ∈ V
13 vex 3412 . . . . . . . . . . . . 13 𝑧 ∈ V
1412, 13op1st 7769 . . . . . . . . . . . 12 (1st ‘⟨𝑦, 𝑧⟩) = 𝑦
1514oveq1i 7223 . . . . . . . . . . 11 ((1st ‘⟨𝑦, 𝑧⟩)↑2) = (𝑦↑2)
1612, 13op2nd 7770 . . . . . . . . . . . . 13 (2nd ‘⟨𝑦, 𝑧⟩) = 𝑧
1716oveq1i 7223 . . . . . . . . . . . 12 ((2nd ‘⟨𝑦, 𝑧⟩)↑2) = (𝑧↑2)
1817oveq2i 7224 . . . . . . . . . . 11 (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)) = (𝐷 · (𝑧↑2))
1915, 18oveq12i 7225 . . . . . . . . . 10 (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2)))
2011, 19eqtrdi 2794 . . . . . . . . 9 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
2120ad2antrl 728 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
22 simprrl 781 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
23 simpl 486 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝐷 ∈ ℕ)
24 simprr 773 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
2524ad2antll 729 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
26 nnz 12199 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
2726ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑦 ∈ ℤ)
28 zsqcl 13700 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑦↑2) ∈ ℤ)
30 nnz 12199 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
3130ad2antrl 728 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℤ)
32 simplr 769 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℕ)
3332nnzd 12281 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℤ)
34 zsqcl 13700 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑧↑2) ∈ ℤ)
3631, 35zmulcld 12288 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝐷 · (𝑧↑2)) ∈ ℤ)
3729, 36zsubcld 12287 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ)
38 1re 10833 . . . . . . . . . . . . . . 15 1 ∈ ℝ
39 2re 11904 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
40 nnre 11837 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
4140ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℝ)
42 nnnn0 12097 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ0)
4342ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℕ0)
4443nn0ge0d 12153 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 0 ≤ 𝐷)
4541, 44resqrtcld 14981 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (√‘𝐷) ∈ ℝ)
46 remulcl 10814 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ (√‘𝐷) ∈ ℝ) → (2 · (√‘𝐷)) ∈ ℝ)
4739, 45, 46sylancr 590 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (2 · (√‘𝐷)) ∈ ℝ)
48 readdcl 10812 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (2 · (√‘𝐷)) ∈ ℝ) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
4938, 47, 48sylancr 590 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
5049flcld 13373 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5150znegcld 12284 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5237zred 12282 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ)
5350zred 12282 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ)
54 nn0abscl 14876 . . . . . . . . . . . . . . . . . 18 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5537, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5655nn0zd 12280 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ)
5756zred 12282 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℝ)
58 peano2re 11005 . . . . . . . . . . . . . . . 16 ((⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
5953, 58syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
60 simprr 773 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
61 flltp1 13375 . . . . . . . . . . . . . . . 16 ((1 + (2 · (√‘𝐷))) ∈ ℝ → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6249, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6357, 49, 59, 60, 62lttrd 10993 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
64 zleltp1 12228 . . . . . . . . . . . . . . 15 (((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6556, 50, 64syl2anc 587 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6663, 65mpbird 260 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))
67 absle 14879 . . . . . . . . . . . . . 14 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
6867biimpa 480 . . . . . . . . . . . . 13 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
6952, 53, 66, 68syl21anc 838 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
70 elfz 13101 . . . . . . . . . . . . 13 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
7170biimpar 481 . . . . . . . . . . . 12 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) ∧ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7237, 51, 50, 69, 71syl31anc 1375 . . . . . . . . . . 11 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7322, 23, 25, 72syl12anc 837 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7473adantlr 715 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
75 simprl 771 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
7675ad2antll 729 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
77 eldifsn 4700 . . . . . . . . 9 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
7874, 76, 77sylanbrc 586 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
7921, 78eqeltrd 2838 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
8079ex 416 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8180exlimdvv 1942 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
825, 81syl5bi 245 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8382imp 410 . . 3 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
841, 4, 83fiphp3d 40344 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ)
85 eldif 3876 . . . . . 6 (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}))
86 elfzelz 13112 . . . . . . . 8 (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → 𝑥 ∈ ℤ)
87 simp2 1139 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ∈ ℤ)
88 velsn 4557 . . . . . . . . . . . . 13 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8988biimpri 231 . . . . . . . . . . . 12 (𝑥 = 0 → 𝑥 ∈ {0})
9089necon3bi 2967 . . . . . . . . . . 11 𝑥 ∈ {0} → 𝑥 ≠ 0)
91903ad2ant3 1137 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ≠ 0)
9287, 91jca 515 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))
93923exp 1121 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ℤ → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9486, 93syl5 34 . . . . . . 7 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9594impd 414 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
9685, 95syl5bi 245 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
97 simp2l 1201 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ∈ ℤ)
98 simp2r 1202 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ≠ 0)
99 nnex 11836 . . . . . . . . . . 11 ℕ ∈ V
10099, 99xpex 7538 . . . . . . . . . 10 (ℕ × ℕ) ∈ V
101 opabssxp 5640 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ)
102 ssdomg 8674 . . . . . . . . . 10 ((ℕ × ℕ) ∈ V → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)))
103100, 101, 102mp2 9 . . . . . . . . 9 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)
104 xpnnen 15772 . . . . . . . . 9 (ℕ × ℕ) ≈ ℕ
105 domentr 8687 . . . . . . . . 9 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ)
106103, 104, 105mp2an 692 . . . . . . . 8 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ
107 ensym 8677 . . . . . . . . . 10 ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
1081073ad2ant3 1137 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
109100, 101ssexi 5215 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V
110 fveq2 6717 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (1st𝑎) = (1st𝑏))
111110oveq1d 7228 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → ((1st𝑎)↑2) = ((1st𝑏)↑2))
112 fveq2 6717 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (2nd𝑎) = (2nd𝑏))
113112oveq1d 7228 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((2nd𝑎)↑2) = ((2nd𝑏)↑2))
114113oveq2d 7229 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd𝑏)↑2)))
115111, 114oveq12d 7231 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
116115eqeq1d 2739 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → ((((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥 ↔ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
117116elrab 3602 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ↔ (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
118 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝑏 = ⟨𝑦, 𝑧⟩)
119 simprrl 781 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
120 fveq2 6717 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → (1st𝑏) = (1st ‘⟨𝑦, 𝑧⟩))
121120oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → ((1st𝑏)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
122 fveq2 6717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = ⟨𝑦, 𝑧⟩ → (2nd𝑏) = (2nd ‘⟨𝑦, 𝑧⟩))
123122oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → ((2nd𝑏)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
124123oveq2d 7229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑏)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
125121, 124oveq12d 7231 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ⟨𝑦, 𝑧⟩ → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
126125, 19eqtr2di 2795 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ⟨𝑦, 𝑧⟩ → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
127126ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
128 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥)
129127, 128eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)
130118, 119, 129jca32 519 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
131130ex 416 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → ((𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
1321312eximdv 1927 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
133 elopab 5408 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
134 elopab 5408 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
135132, 133, 1343imtr4g 299 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
136135expimpd 457 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (((((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
137136ancomsd 469 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ((𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
138117, 137syl5bi 245 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
139138ssrdv 3907 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
1401393adant3 1134 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
141 ssdomg 8674 . . . . . . . . . 10 ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
142109, 140, 141mpsyl 68 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
143 endomtr 8686 . . . . . . . . 9 ((ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
144108, 142, 143syl2anc 587 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
145 sbth 8766 . . . . . . . 8 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ ∧ ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
146106, 144, 145sylancr 590 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
14797, 98, 146jca32 519 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
1481473exp 1121 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
14996, 148syld 47 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
150149impd 414 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))))
151150reximdv2 3190 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
15284, 151mpd 15 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wne 2940  wrex 3062  {crab 3065  Vcvv 3408  cdif 3863  wss 3866  {csn 4541  cop 4547   class class class wbr 5053  {copab 5115   × cxp 5549  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  cen 8623  cdom 8624  Fincfn 8626  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062  -cneg 11063  cn 11830  2c2 11885  0cn0 12090  cz 12176  cq 12544  ...cfz 13095  cfl 13365  cexp 13635  csqrt 14796  abscabs 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-ico 12941  df-fz 13096  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-gcd 16054  df-numer 16291  df-denom 16292
This theorem is referenced by:  pellex  40360
  Copyright terms: Public domain W3C validator