Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem5 Structured version   Visualization version   GIF version

Theorem pellexlem5 42820
Description: Lemma for pellex 42822. Invoking fiphp3d 42806, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellexlem5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem4 42819 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ)
2 fzfi 14009 . . . 4 (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin
3 diffi 9213 . . . 4 ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
42, 3mp1i 13 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
5 elopab 5536 . . . . 5 (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
6 fveq2 6906 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → (1st𝑎) = (1st ‘⟨𝑦, 𝑧⟩))
76oveq1d 7445 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → ((1st𝑎)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
8 fveq2 6906 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑦, 𝑧⟩ → (2nd𝑎) = (2nd ‘⟨𝑦, 𝑧⟩))
98oveq1d 7445 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → ((2nd𝑎)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
109oveq2d 7446 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
117, 10oveq12d 7448 . . . . . . . . . 10 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
12 vex 3481 . . . . . . . . . . . . 13 𝑦 ∈ V
13 vex 3481 . . . . . . . . . . . . 13 𝑧 ∈ V
1412, 13op1st 8020 . . . . . . . . . . . 12 (1st ‘⟨𝑦, 𝑧⟩) = 𝑦
1514oveq1i 7440 . . . . . . . . . . 11 ((1st ‘⟨𝑦, 𝑧⟩)↑2) = (𝑦↑2)
1612, 13op2nd 8021 . . . . . . . . . . . . 13 (2nd ‘⟨𝑦, 𝑧⟩) = 𝑧
1716oveq1i 7440 . . . . . . . . . . . 12 ((2nd ‘⟨𝑦, 𝑧⟩)↑2) = (𝑧↑2)
1817oveq2i 7441 . . . . . . . . . . 11 (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)) = (𝐷 · (𝑧↑2))
1915, 18oveq12i 7442 . . . . . . . . . 10 (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2)))
2011, 19eqtrdi 2790 . . . . . . . . 9 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
2120ad2antrl 728 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
22 simprrl 781 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
23 simpl 482 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝐷 ∈ ℕ)
24 simprr 773 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
2524ad2antll 729 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
26 nnz 12631 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
2726ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑦 ∈ ℤ)
28 zsqcl 14165 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑦↑2) ∈ ℤ)
30 nnz 12631 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
3130ad2antrl 728 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℤ)
32 simplr 769 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℕ)
3332nnzd 12637 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℤ)
34 zsqcl 14165 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑧↑2) ∈ ℤ)
3631, 35zmulcld 12725 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝐷 · (𝑧↑2)) ∈ ℤ)
3729, 36zsubcld 12724 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ)
38 1re 11258 . . . . . . . . . . . . . . 15 1 ∈ ℝ
39 2re 12337 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
40 nnre 12270 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
4140ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℝ)
42 nnnn0 12530 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ0)
4342ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℕ0)
4443nn0ge0d 12587 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 0 ≤ 𝐷)
4541, 44resqrtcld 15452 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (√‘𝐷) ∈ ℝ)
46 remulcl 11237 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ (√‘𝐷) ∈ ℝ) → (2 · (√‘𝐷)) ∈ ℝ)
4739, 45, 46sylancr 587 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (2 · (√‘𝐷)) ∈ ℝ)
48 readdcl 11235 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (2 · (√‘𝐷)) ∈ ℝ) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
4938, 47, 48sylancr 587 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
5049flcld 13834 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5150znegcld 12721 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5237zred 12719 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ)
5350zred 12719 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ)
54 nn0abscl 15347 . . . . . . . . . . . . . . . . . 18 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5537, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5655nn0zd 12636 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ)
5756zred 12719 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℝ)
58 peano2re 11431 . . . . . . . . . . . . . . . 16 ((⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
5953, 58syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
60 simprr 773 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
61 flltp1 13836 . . . . . . . . . . . . . . . 16 ((1 + (2 · (√‘𝐷))) ∈ ℝ → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6249, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6357, 49, 59, 60, 62lttrd 11419 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
64 zleltp1 12665 . . . . . . . . . . . . . . 15 (((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6556, 50, 64syl2anc 584 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6663, 65mpbird 257 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))
67 absle 15350 . . . . . . . . . . . . . 14 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
6867biimpa 476 . . . . . . . . . . . . 13 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
6952, 53, 66, 68syl21anc 838 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
70 elfz 13549 . . . . . . . . . . . . 13 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
7170biimpar 477 . . . . . . . . . . . 12 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) ∧ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7237, 51, 50, 69, 71syl31anc 1372 . . . . . . . . . . 11 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7322, 23, 25, 72syl12anc 837 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7473adantlr 715 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
75 simprl 771 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
7675ad2antll 729 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
77 eldifsn 4790 . . . . . . . . 9 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
7874, 76, 77sylanbrc 583 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
7921, 78eqeltrd 2838 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
8079ex 412 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8180exlimdvv 1931 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
825, 81biimtrid 242 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8382imp 406 . . 3 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
841, 4, 83fiphp3d 42806 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ)
85 eldif 3972 . . . . . 6 (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}))
86 elfzelz 13560 . . . . . . . 8 (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → 𝑥 ∈ ℤ)
87 simp2 1136 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ∈ ℤ)
88 velsn 4646 . . . . . . . . . . . . 13 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8988biimpri 228 . . . . . . . . . . . 12 (𝑥 = 0 → 𝑥 ∈ {0})
9089necon3bi 2964 . . . . . . . . . . 11 𝑥 ∈ {0} → 𝑥 ≠ 0)
91903ad2ant3 1134 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ≠ 0)
9287, 91jca 511 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))
93923exp 1118 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ℤ → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9486, 93syl5 34 . . . . . . 7 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9594impd 410 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
9685, 95biimtrid 242 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
97 simp2l 1198 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ∈ ℤ)
98 simp2r 1199 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ≠ 0)
99 nnex 12269 . . . . . . . . . . 11 ℕ ∈ V
10099, 99xpex 7771 . . . . . . . . . 10 (ℕ × ℕ) ∈ V
101 opabssxp 5780 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ)
102 ssdomg 9038 . . . . . . . . . 10 ((ℕ × ℕ) ∈ V → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)))
103100, 101, 102mp2 9 . . . . . . . . 9 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)
104 xpnnen 16243 . . . . . . . . 9 (ℕ × ℕ) ≈ ℕ
105 domentr 9051 . . . . . . . . 9 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ)
106103, 104, 105mp2an 692 . . . . . . . 8 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ
107 ensym 9041 . . . . . . . . . 10 ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
1081073ad2ant3 1134 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
109100, 101ssexi 5327 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V
110 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (1st𝑎) = (1st𝑏))
111110oveq1d 7445 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → ((1st𝑎)↑2) = ((1st𝑏)↑2))
112 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (2nd𝑎) = (2nd𝑏))
113112oveq1d 7445 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((2nd𝑎)↑2) = ((2nd𝑏)↑2))
114113oveq2d 7446 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd𝑏)↑2)))
115111, 114oveq12d 7448 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
116115eqeq1d 2736 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → ((((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥 ↔ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
117116elrab 3694 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ↔ (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
118 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝑏 = ⟨𝑦, 𝑧⟩)
119 simprrl 781 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
120 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → (1st𝑏) = (1st ‘⟨𝑦, 𝑧⟩))
121120oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → ((1st𝑏)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
122 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = ⟨𝑦, 𝑧⟩ → (2nd𝑏) = (2nd ‘⟨𝑦, 𝑧⟩))
123122oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → ((2nd𝑏)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
124123oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑏)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
125121, 124oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ⟨𝑦, 𝑧⟩ → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
126125, 19eqtr2di 2791 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ⟨𝑦, 𝑧⟩ → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
127126ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
128 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥)
129127, 128eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)
130118, 119, 129jca32 515 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
131130ex 412 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → ((𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
1321312eximdv 1916 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
133 elopab 5536 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
134 elopab 5536 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
135132, 133, 1343imtr4g 296 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
136135expimpd 453 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (((((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
137136ancomsd 465 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ((𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
138117, 137biimtrid 242 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
139138ssrdv 4000 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
1401393adant3 1131 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
141 ssdomg 9038 . . . . . . . . . 10 ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
142109, 140, 141mpsyl 68 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
143 endomtr 9050 . . . . . . . . 9 ((ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
144108, 142, 143syl2anc 584 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
145 sbth 9131 . . . . . . . 8 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ ∧ ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
146106, 144, 145sylancr 587 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
14797, 98, 146jca32 515 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
1481473exp 1118 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
14996, 148syld 47 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
150149impd 410 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))))
151150reximdv2 3161 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
15284, 151mpd 15 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wrex 3067  {crab 3432  Vcvv 3477  cdif 3959  wss 3962  {csn 4630  cop 4636   class class class wbr 5147  {copab 5209   × cxp 5686  cfv 6562  (class class class)co 7430  1st c1st 8010  2nd c2nd 8011  cen 8980  cdom 8981  Fincfn 8983  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490  cn 12263  2c2 12318  0cn0 12523  cz 12610  cq 12987  ...cfz 13543  cfl 13826  cexp 14098  csqrt 15268  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-ico 13389  df-fz 13544  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-numer 16768  df-denom 16769
This theorem is referenced by:  pellex  42822
  Copyright terms: Public domain W3C validator