Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem5 Structured version   Visualization version   GIF version

Theorem pellexlem5 39945
 Description: Lemma for pellex 39947. Invoking fiphp3d 39931, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellexlem5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem4 39944 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ)
2 fzfi 13355 . . . 4 (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin
3 diffi 8752 . . . 4 ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
42, 3mp1i 13 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
5 elopab 5383 . . . . 5 (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
6 fveq2 6655 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → (1st𝑎) = (1st ‘⟨𝑦, 𝑧⟩))
76oveq1d 7160 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → ((1st𝑎)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
8 fveq2 6655 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑦, 𝑧⟩ → (2nd𝑎) = (2nd ‘⟨𝑦, 𝑧⟩))
98oveq1d 7160 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → ((2nd𝑎)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
109oveq2d 7161 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
117, 10oveq12d 7163 . . . . . . . . . 10 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
12 vex 3445 . . . . . . . . . . . . 13 𝑦 ∈ V
13 vex 3445 . . . . . . . . . . . . 13 𝑧 ∈ V
1412, 13op1st 7692 . . . . . . . . . . . 12 (1st ‘⟨𝑦, 𝑧⟩) = 𝑦
1514oveq1i 7155 . . . . . . . . . . 11 ((1st ‘⟨𝑦, 𝑧⟩)↑2) = (𝑦↑2)
1612, 13op2nd 7693 . . . . . . . . . . . . 13 (2nd ‘⟨𝑦, 𝑧⟩) = 𝑧
1716oveq1i 7155 . . . . . . . . . . . 12 ((2nd ‘⟨𝑦, 𝑧⟩)↑2) = (𝑧↑2)
1817oveq2i 7156 . . . . . . . . . . 11 (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)) = (𝐷 · (𝑧↑2))
1915, 18oveq12i 7157 . . . . . . . . . 10 (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2)))
2011, 19eqtrdi 2849 . . . . . . . . 9 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
2120ad2antrl 727 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
22 simprrl 780 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
23 simpl 486 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝐷 ∈ ℕ)
24 simprr 772 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
2524ad2antll 728 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
26 nnz 12012 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
2726ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑦 ∈ ℤ)
28 zsqcl 13510 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑦↑2) ∈ ℤ)
30 nnz 12012 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
3130ad2antrl 727 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℤ)
32 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℕ)
3332nnzd 12094 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℤ)
34 zsqcl 13510 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑧↑2) ∈ ℤ)
3631, 35zmulcld 12101 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝐷 · (𝑧↑2)) ∈ ℤ)
3729, 36zsubcld 12100 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ)
38 1re 10648 . . . . . . . . . . . . . . 15 1 ∈ ℝ
39 2re 11717 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
40 nnre 11650 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
4140ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℝ)
42 nnnn0 11910 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ0)
4342ad2antrl 727 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℕ0)
4443nn0ge0d 11966 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 0 ≤ 𝐷)
4541, 44resqrtcld 14789 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (√‘𝐷) ∈ ℝ)
46 remulcl 10629 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ (√‘𝐷) ∈ ℝ) → (2 · (√‘𝐷)) ∈ ℝ)
4739, 45, 46sylancr 590 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (2 · (√‘𝐷)) ∈ ℝ)
48 readdcl 10627 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (2 · (√‘𝐷)) ∈ ℝ) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
4938, 47, 48sylancr 590 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
5049flcld 13183 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5150znegcld 12097 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5237zred 12095 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ)
5350zred 12095 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ)
54 nn0abscl 14684 . . . . . . . . . . . . . . . . . 18 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5537, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5655nn0zd 12093 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ)
5756zred 12095 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℝ)
58 peano2re 10820 . . . . . . . . . . . . . . . 16 ((⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
5953, 58syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
60 simprr 772 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
61 flltp1 13185 . . . . . . . . . . . . . . . 16 ((1 + (2 · (√‘𝐷))) ∈ ℝ → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6249, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6357, 49, 59, 60, 62lttrd 10808 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
64 zleltp1 12041 . . . . . . . . . . . . . . 15 (((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6556, 50, 64syl2anc 587 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6663, 65mpbird 260 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))
67 absle 14687 . . . . . . . . . . . . . 14 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
6867biimpa 480 . . . . . . . . . . . . 13 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
6952, 53, 66, 68syl21anc 836 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
70 elfz 12911 . . . . . . . . . . . . 13 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
7170biimpar 481 . . . . . . . . . . . 12 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) ∧ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7237, 51, 50, 69, 71syl31anc 1370 . . . . . . . . . . 11 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7322, 23, 25, 72syl12anc 835 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7473adantlr 714 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
75 simprl 770 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
7675ad2antll 728 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
77 eldifsn 4683 . . . . . . . . 9 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
7874, 76, 77sylanbrc 586 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
7921, 78eqeltrd 2890 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
8079ex 416 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8180exlimdvv 1935 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
825, 81syl5bi 245 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8382imp 410 . . 3 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
841, 4, 83fiphp3d 39931 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ)
85 eldif 3893 . . . . . 6 (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}))
86 elfzelz 12922 . . . . . . . 8 (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → 𝑥 ∈ ℤ)
87 simp2 1134 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ∈ ℤ)
88 velsn 4544 . . . . . . . . . . . . 13 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8988biimpri 231 . . . . . . . . . . . 12 (𝑥 = 0 → 𝑥 ∈ {0})
9089necon3bi 3013 . . . . . . . . . . 11 𝑥 ∈ {0} → 𝑥 ≠ 0)
91903ad2ant3 1132 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ≠ 0)
9287, 91jca 515 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))
93923exp 1116 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ℤ → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9486, 93syl5 34 . . . . . . 7 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9594impd 414 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
9685, 95syl5bi 245 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
97 simp2l 1196 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ∈ ℤ)
98 simp2r 1197 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ≠ 0)
99 nnex 11649 . . . . . . . . . . 11 ℕ ∈ V
10099, 99xpex 7469 . . . . . . . . . 10 (ℕ × ℕ) ∈ V
101 opabssxp 5611 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ)
102 ssdomg 8556 . . . . . . . . . 10 ((ℕ × ℕ) ∈ V → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)))
103100, 101, 102mp2 9 . . . . . . . . 9 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)
104 xpnnen 15576 . . . . . . . . 9 (ℕ × ℕ) ≈ ℕ
105 domentr 8569 . . . . . . . . 9 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ)
106103, 104, 105mp2an 691 . . . . . . . 8 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ
107 ensym 8559 . . . . . . . . . 10 ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
1081073ad2ant3 1132 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
109100, 101ssexi 5194 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V
110 fveq2 6655 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (1st𝑎) = (1st𝑏))
111110oveq1d 7160 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → ((1st𝑎)↑2) = ((1st𝑏)↑2))
112 fveq2 6655 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (2nd𝑎) = (2nd𝑏))
113112oveq1d 7160 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((2nd𝑎)↑2) = ((2nd𝑏)↑2))
114113oveq2d 7161 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd𝑏)↑2)))
115111, 114oveq12d 7163 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
116115eqeq1d 2800 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → ((((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥 ↔ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
117116elrab 3630 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ↔ (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
118 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝑏 = ⟨𝑦, 𝑧⟩)
119 simprrl 780 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
120 fveq2 6655 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → (1st𝑏) = (1st ‘⟨𝑦, 𝑧⟩))
121120oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → ((1st𝑏)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
122 fveq2 6655 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = ⟨𝑦, 𝑧⟩ → (2nd𝑏) = (2nd ‘⟨𝑦, 𝑧⟩))
123122oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → ((2nd𝑏)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
124123oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑏)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
125121, 124oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ⟨𝑦, 𝑧⟩ → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
126125, 19eqtr2di 2850 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ⟨𝑦, 𝑧⟩ → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
127126ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
128 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥)
129127, 128eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)
130118, 119, 129jca32 519 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
131130ex 416 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → ((𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
1321312eximdv 1920 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
133 elopab 5383 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
134 elopab 5383 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
135132, 133, 1343imtr4g 299 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
136135expimpd 457 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (((((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
137136ancomsd 469 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ((𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
138117, 137syl5bi 245 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
139138ssrdv 3923 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
1401393adant3 1129 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
141 ssdomg 8556 . . . . . . . . . 10 ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
142109, 140, 141mpsyl 68 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
143 endomtr 8568 . . . . . . . . 9 ((ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
144108, 142, 143syl2anc 587 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
145 sbth 8639 . . . . . . . 8 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ ∧ ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
146106, 144, 145sylancr 590 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
14797, 98, 146jca32 519 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
1481473exp 1116 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
14996, 148syld 47 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
150149impd 414 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))))
151150reximdv2 3231 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
15284, 151mpd 15 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107  {crab 3110  Vcvv 3442   ∖ cdif 3880   ⊆ wss 3883  {csn 4528  ⟨cop 4534   class class class wbr 5034  {copab 5096   × cxp 5521  ‘cfv 6332  (class class class)co 7145  1st c1st 7682  2nd c2nd 7683   ≈ cen 8507   ≼ cdom 8508  Fincfn 8510  ℝcr 10543  0cc0 10544  1c1 10545   + caddc 10547   · cmul 10549   < clt 10682   ≤ cle 10683   − cmin 10877  -cneg 10878  ℕcn 11643  2c2 11698  ℕ0cn0 11903  ℤcz 11989  ℚcq 12356  ...cfz 12905  ⌊cfl 13175  ↑cexp 13445  √csqrt 14604  abscabs 14605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-omul 8108  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-xnn0 11976  df-z 11990  df-uz 12252  df-q 12357  df-rp 12398  df-ico 12752  df-fz 12906  df-fl 13177  df-mod 13253  df-seq 13385  df-exp 13446  df-hash 13707  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-dvds 15620  df-gcd 15854  df-numer 16085  df-denom 16086 This theorem is referenced by:  pellex  39947
 Copyright terms: Public domain W3C validator