Proof of Theorem umgr2wlkon
Step | Hyp | Ref
| Expression |
1 | | umgr2wlk.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
2 | 1 | umgr2wlk 28215 |
. 2
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
3 | | simp1 1134 |
. . . . . . 7
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)𝑝) |
4 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (𝐴 = (𝑝‘0) ↔ (𝑝‘0) = 𝐴) |
5 | 4 | biimpi 215 |
. . . . . . . . 9
⊢ (𝐴 = (𝑝‘0) → (𝑝‘0) = 𝐴) |
6 | 5 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘0) = 𝐴) |
7 | 6 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝‘0) = 𝐴) |
8 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (2 =
(♯‘𝑓) →
(𝑝‘2) = (𝑝‘(♯‘𝑓))) |
9 | 8 | eqcoms 2746 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑓) =
2 → (𝑝‘2) =
(𝑝‘(♯‘𝑓))) |
10 | 9 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑓) =
2 → ((𝑝‘2) =
𝐶 ↔ (𝑝‘(♯‘𝑓)) = 𝐶)) |
11 | 10 | biimpcd 248 |
. . . . . . . . . . . 12
⊢ ((𝑝‘2) = 𝐶 → ((♯‘𝑓) = 2 → (𝑝‘(♯‘𝑓)) = 𝐶)) |
12 | 11 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ (𝐶 = (𝑝‘2) → ((♯‘𝑓) = 2 → (𝑝‘(♯‘𝑓)) = 𝐶)) |
13 | 12 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((♯‘𝑓) = 2 → (𝑝‘(♯‘𝑓)) = 𝐶)) |
14 | 13 | com12 32 |
. . . . . . . . 9
⊢
((♯‘𝑓) =
2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘(♯‘𝑓)) = 𝐶)) |
15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘(♯‘𝑓)) = 𝐶))) |
16 | 15 | 3imp 1109 |
. . . . . . 7
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝‘(♯‘𝑓)) = 𝐶) |
17 | 3, 7, 16 | 3jca 1126 |
. . . . . 6
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶)) |
18 | 17 | adantl 481 |
. . . . 5
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶)) |
19 | 1 | umgr2adedgwlklem 28210 |
. . . . . . 7
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
20 | | simprr1 1219 |
. . . . . . . 8
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) → 𝐴 ∈ (Vtx‘𝐺)) |
21 | | simprr3 1221 |
. . . . . . . 8
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) → 𝐶 ∈ (Vtx‘𝐺)) |
22 | 20, 21 | jca 511 |
. . . . . . 7
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
23 | 19, 22 | mpdan 683 |
. . . . . 6
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
24 | | vex 3426 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
25 | | vex 3426 |
. . . . . . . 8
⊢ 𝑝 ∈ V |
26 | 24, 25 | pm3.2i 470 |
. . . . . . 7
⊢ (𝑓 ∈ V ∧ 𝑝 ∈ V) |
27 | 26 | a1i 11 |
. . . . . 6
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓 ∈ V ∧ 𝑝 ∈ V)) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
29 | 28 | iswlkon 27927 |
. . . . . 6
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝑓 ∈ V ∧ 𝑝 ∈ V)) → (𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶))) |
30 | 23, 27, 29 | syl2an2r 681 |
. . . . 5
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶))) |
31 | 18, 30 | mpbird 256 |
. . . 4
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝) |
32 | 31 | ex 412 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝)) |
33 | 32 | 2eximdv 1923 |
. 2
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑓∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ∃𝑓∃𝑝 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝)) |
34 | 2, 33 | mpd 15 |
1
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓∃𝑝 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝) |