Proof of Theorem umgr2wlkon
| Step | Hyp | Ref
| Expression |
| 1 | | umgr2wlk.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
| 2 | 1 | umgr2wlk 29936 |
. 2
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
| 3 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)𝑝) |
| 4 | | eqcom 2743 |
. . . . . . . . . 10
⊢ (𝐴 = (𝑝‘0) ↔ (𝑝‘0) = 𝐴) |
| 5 | 4 | biimpi 216 |
. . . . . . . . 9
⊢ (𝐴 = (𝑝‘0) → (𝑝‘0) = 𝐴) |
| 6 | 5 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘0) = 𝐴) |
| 7 | 6 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝‘0) = 𝐴) |
| 8 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (2 =
(♯‘𝑓) →
(𝑝‘2) = (𝑝‘(♯‘𝑓))) |
| 9 | 8 | eqcoms 2744 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑓) =
2 → (𝑝‘2) =
(𝑝‘(♯‘𝑓))) |
| 10 | 9 | eqeq1d 2738 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑓) =
2 → ((𝑝‘2) =
𝐶 ↔ (𝑝‘(♯‘𝑓)) = 𝐶)) |
| 11 | 10 | biimpcd 249 |
. . . . . . . . . . . 12
⊢ ((𝑝‘2) = 𝐶 → ((♯‘𝑓) = 2 → (𝑝‘(♯‘𝑓)) = 𝐶)) |
| 12 | 11 | eqcoms 2744 |
. . . . . . . . . . 11
⊢ (𝐶 = (𝑝‘2) → ((♯‘𝑓) = 2 → (𝑝‘(♯‘𝑓)) = 𝐶)) |
| 13 | 12 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((♯‘𝑓) = 2 → (𝑝‘(♯‘𝑓)) = 𝐶)) |
| 14 | 13 | com12 32 |
. . . . . . . . 9
⊢
((♯‘𝑓) =
2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘(♯‘𝑓)) = 𝐶)) |
| 15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘(♯‘𝑓)) = 𝐶))) |
| 16 | 15 | 3imp 1110 |
. . . . . . 7
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝‘(♯‘𝑓)) = 𝐶) |
| 17 | 3, 7, 16 | 3jca 1128 |
. . . . . 6
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶)) |
| 18 | 17 | adantl 481 |
. . . . 5
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶)) |
| 19 | 1 | umgr2adedgwlklem 29931 |
. . . . . . 7
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 20 | | simprr1 1222 |
. . . . . . . 8
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) → 𝐴 ∈ (Vtx‘𝐺)) |
| 21 | | simprr3 1224 |
. . . . . . . 8
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) → 𝐶 ∈ (Vtx‘𝐺)) |
| 22 | 20, 21 | jca 511 |
. . . . . . 7
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
| 23 | 19, 22 | mpdan 687 |
. . . . . 6
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
| 24 | | vex 3468 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 25 | | vex 3468 |
. . . . . . . 8
⊢ 𝑝 ∈ V |
| 26 | 24, 25 | pm3.2i 470 |
. . . . . . 7
⊢ (𝑓 ∈ V ∧ 𝑝 ∈ V) |
| 27 | 26 | a1i 11 |
. . . . . 6
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓 ∈ V ∧ 𝑝 ∈ V)) |
| 28 | | eqid 2736 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 29 | 28 | iswlkon 29642 |
. . . . . 6
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝑓 ∈ V ∧ 𝑝 ∈ V)) → (𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶))) |
| 30 | 23, 27, 29 | syl2an2r 685 |
. . . . 5
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐶))) |
| 31 | 18, 30 | mpbird 257 |
. . . 4
⊢ (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝) |
| 32 | 31 | ex 412 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝)) |
| 33 | 32 | 2eximdv 1919 |
. 2
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (∃𝑓∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ∃𝑓∃𝑝 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝)) |
| 34 | 2, 33 | mpd 15 |
1
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓∃𝑝 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝) |