MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlkon Structured version   Visualization version   GIF version

Theorem umgr2wlkon 29468
Description: For each pair of adjacent edges in a multigraph, there is a walk of length 2 between the not common vertices of the edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
umgr2wlkon ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘ 𝑓(𝐴(WalksOnβ€˜πΊ)𝐢)𝑝)
Distinct variable groups:   𝐴,𝑓,𝑝   𝐡,𝑓,𝑝   𝐢,𝑓,𝑝   𝑓,𝐺,𝑝   𝑓,𝐸,𝑝

Proof of Theorem umgr2wlkon
StepHypRef Expression
1 umgr2wlk.e . . 3 𝐸 = (Edgβ€˜πΊ)
21umgr2wlk 29467 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))))
3 simp1 1135 . . . . . . 7 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ 𝑓(Walksβ€˜πΊ)𝑝)
4 eqcom 2738 . . . . . . . . . 10 (𝐴 = (π‘β€˜0) ↔ (π‘β€˜0) = 𝐴)
54biimpi 215 . . . . . . . . 9 (𝐴 = (π‘β€˜0) β†’ (π‘β€˜0) = 𝐴)
653ad2ant1 1132 . . . . . . . 8 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (π‘β€˜0) = 𝐴)
763ad2ant3 1134 . . . . . . 7 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (π‘β€˜0) = 𝐴)
8 fveq2 6892 . . . . . . . . . . . . . . 15 (2 = (β™―β€˜π‘“) β†’ (π‘β€˜2) = (π‘β€˜(β™―β€˜π‘“)))
98eqcoms 2739 . . . . . . . . . . . . . 14 ((β™―β€˜π‘“) = 2 β†’ (π‘β€˜2) = (π‘β€˜(β™―β€˜π‘“)))
109eqeq1d 2733 . . . . . . . . . . . . 13 ((β™―β€˜π‘“) = 2 β†’ ((π‘β€˜2) = 𝐢 ↔ (π‘β€˜(β™―β€˜π‘“)) = 𝐢))
1110biimpcd 248 . . . . . . . . . . . 12 ((π‘β€˜2) = 𝐢 β†’ ((β™―β€˜π‘“) = 2 β†’ (π‘β€˜(β™―β€˜π‘“)) = 𝐢))
1211eqcoms 2739 . . . . . . . . . . 11 (𝐢 = (π‘β€˜2) β†’ ((β™―β€˜π‘“) = 2 β†’ (π‘β€˜(β™―β€˜π‘“)) = 𝐢))
13123ad2ant3 1134 . . . . . . . . . 10 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ ((β™―β€˜π‘“) = 2 β†’ (π‘β€˜(β™―β€˜π‘“)) = 𝐢))
1413com12 32 . . . . . . . . 9 ((β™―β€˜π‘“) = 2 β†’ ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (π‘β€˜(β™―β€˜π‘“)) = 𝐢))
1514a1i 11 . . . . . . . 8 (𝑓(Walksβ€˜πΊ)𝑝 β†’ ((β™―β€˜π‘“) = 2 β†’ ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (π‘β€˜(β™―β€˜π‘“)) = 𝐢)))
16153imp 1110 . . . . . . 7 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (π‘β€˜(β™―β€˜π‘“)) = 𝐢)
173, 7, 163jca 1127 . . . . . 6 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐢))
1817adantl 481 . . . . 5 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ∧ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐢))
191umgr2adedgwlklem 29462 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ ((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))))
20 simprr1 1220 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ∧ ((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))) β†’ 𝐴 ∈ (Vtxβ€˜πΊ))
21 simprr3 1222 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ∧ ((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))) β†’ 𝐢 ∈ (Vtxβ€˜πΊ))
2220, 21jca 511 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ∧ ((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
2319, 22mpdan 684 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
24 vex 3477 . . . . . . . 8 𝑓 ∈ V
25 vex 3477 . . . . . . . 8 𝑝 ∈ V
2624, 25pm3.2i 470 . . . . . . 7 (𝑓 ∈ V ∧ 𝑝 ∈ V)
2726a1i 11 . . . . . 6 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ∧ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑓 ∈ V ∧ 𝑝 ∈ V))
28 eqid 2731 . . . . . . 7 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2928iswlkon 29178 . . . . . 6 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝑓 ∈ V ∧ 𝑝 ∈ V)) β†’ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐢)𝑝 ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐢)))
3023, 27, 29syl2an2r 682 . . . . 5 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ∧ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐢)𝑝 ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐢)))
3118, 30mpbird 256 . . . 4 (((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ∧ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ 𝑓(𝐴(WalksOnβ€˜πΊ)𝐢)𝑝)
3231ex 412 . . 3 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ 𝑓(𝐴(WalksOnβ€˜πΊ)𝐢)𝑝))
33322eximdv 1921 . 2 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ βˆƒπ‘“βˆƒπ‘ 𝑓(𝐴(WalksOnβ€˜πΊ)𝐢)𝑝))
342, 33mpd 15 1 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘ 𝑓(𝐴(WalksOnβ€˜πΊ)𝐢)𝑝)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105   β‰  wne 2939  Vcvv 3473  {cpr 4631   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412  0cc0 11113  1c1 11114  2c2 12272  β™―chash 14295  Vtxcvtx 28520  Edgcedg 28571  UMGraphcumgr 28605  Walkscwlks 29117  WalksOncwlkson 29118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-oadd 8473  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-concat 14526  df-s1 14551  df-s2 14804  df-s3 14805  df-edg 28572  df-uhgr 28582  df-upgr 28606  df-umgr 28607  df-wlks 29120  df-wlkson 29121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator