Step | Hyp | Ref
| Expression |
1 | | fzssz 13187 |
. . . . . . . . 9
⊢ (𝑀...𝑁) ⊆ ℤ |
2 | | zssre 12256 |
. . . . . . . . 9
⊢ ℤ
⊆ ℝ |
3 | 1, 2 | sstri 3926 |
. . . . . . . 8
⊢ (𝑀...𝑁) ⊆ ℝ |
4 | | ltso 10986 |
. . . . . . . 8
⊢ < Or
ℝ |
5 | | soss 5514 |
. . . . . . . 8
⊢ ((𝑀...𝑁) ⊆ ℝ → ( < Or ℝ
→ < Or (𝑀...𝑁))) |
6 | 3, 4, 5 | mp2 9 |
. . . . . . 7
⊢ < Or
(𝑀...𝑁) |
7 | | fzfi 13620 |
. . . . . . 7
⊢ (𝑀...𝑁) ∈ Fin |
8 | | fz1iso 14104 |
. . . . . . 7
⊢ (( <
Or (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → ∃ℎ ℎ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁))) |
9 | 6, 7, 8 | mp2an 688 |
. . . . . 6
⊢
∃ℎ ℎ Isom < , <
((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) |
10 | | fzisoeu.4 |
. . . . . . . . . . . . . . . 16
⊢ 𝑁 = ((♯‘𝐻) + (𝑀 − 1)) |
11 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐻 = ∅ →
(♯‘𝐻) =
(♯‘∅)) |
12 | | hash0 14010 |
. . . . . . . . . . . . . . . . . 18
⊢
(♯‘∅) = 0 |
13 | 11, 12 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻 = ∅ →
(♯‘𝐻) =
0) |
14 | 13 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 = ∅ →
((♯‘𝐻) + (𝑀 − 1)) = (0 + (𝑀 − 1))) |
15 | 10, 14 | syl5eq 2791 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 = ∅ → 𝑁 = (0 + (𝑀 − 1))) |
16 | 15 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝐻 = ∅ → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1)))) |
17 | 16 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐻 = ∅) → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1)))) |
18 | | fzisoeu.m |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℤ) |
19 | 18 | zcnd 12356 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ ℂ) |
20 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℂ) |
21 | 19, 20 | subcld 11262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 − 1) ∈ ℂ) |
22 | 21 | addid2d 11106 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0 + (𝑀 − 1)) = (𝑀 − 1)) |
23 | 22 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀...(0 + (𝑀 − 1))) = (𝑀...(𝑀 − 1))) |
24 | 18 | zred 12355 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ ℝ) |
25 | 24 | ltm1d 11837 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀 − 1) < 𝑀) |
26 | | peano2zm 12293 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
27 | 18, 26 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) |
28 | | fzn 13201 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)
→ ((𝑀 − 1) <
𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
29 | 18, 27, 28 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
30 | 25, 29 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀...(𝑀 − 1)) = ∅) |
31 | 23, 30 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀...(0 + (𝑀 − 1))) = ∅) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐻 = ∅) → (𝑀...(0 + (𝑀 − 1))) = ∅) |
33 | | eqcom 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 = ∅ ↔ ∅ =
𝐻) |
34 | 33 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (𝐻 = ∅ → ∅ =
𝐻) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐻 = ∅) → ∅ = 𝐻) |
36 | 17, 32, 35 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐻 = ∅) → (𝑀...𝑁) = 𝐻) |
37 | 36 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻)) |
38 | 20, 19 | pncan3d 11265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 + (𝑀 − 1)) = 𝑀) |
39 | 38 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 = (1 + (𝑀 − 1))) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 = (1 + (𝑀 − 1))) |
41 | | 1red 10907 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ∈
ℝ) |
42 | | neqne 2950 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝐻 = ∅ → 𝐻 ≠ ∅) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ≠ ∅) |
44 | | fzisoeu.h |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐻 ∈ Fin) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ∈ Fin) |
46 | | hashnncl 14009 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐻 ∈ Fin →
((♯‘𝐻) ∈
ℕ ↔ 𝐻 ≠
∅)) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅)) |
48 | 43, 47 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈
ℕ) |
49 | 48 | nnred 11918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈
ℝ) |
50 | 27 | zred 12355 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 − 1) ∈ ℝ) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑀 − 1) ∈ ℝ) |
52 | 48 | nnge1d 11951 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ≤
(♯‘𝐻)) |
53 | 41, 49, 51, 52 | leadd1dd 11519 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ ((♯‘𝐻) + (𝑀 − 1))) |
54 | 53, 10 | breqtrrdi 5112 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ 𝑁) |
55 | 40, 54 | eqbrtrd 5092 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 ≤ 𝑁) |
56 | 18 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 ∈ ℤ) |
57 | | hashcl 13999 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐻 ∈ Fin →
(♯‘𝐻) ∈
ℕ0) |
58 | | nn0z 12273 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐻)
∈ ℕ0 → (♯‘𝐻) ∈ ℤ) |
59 | 44, 57, 58 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘𝐻) ∈
ℤ) |
60 | 59, 27 | zaddcld 12359 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((♯‘𝐻) + (𝑀 − 1)) ∈
ℤ) |
61 | 10, 60 | eqeltrid 2843 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
62 | 61 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ ℤ) |
63 | | eluz 12525 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
64 | 56, 62, 63 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
65 | 55, 64 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ (ℤ≥‘𝑀)) |
66 | | hashfz 14070 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (♯‘(𝑀...𝑁)) = ((𝑁 − 𝑀) + 1)) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = ((𝑁 − 𝑀) + 1)) |
68 | 10 | oveq1i 7265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 − 𝑀) = (((♯‘𝐻) + (𝑀 − 1)) − 𝑀) |
69 | 44, 57 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘𝐻) ∈
ℕ0) |
70 | 69 | nn0cnd 12225 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (♯‘𝐻) ∈
ℂ) |
71 | 70, 21, 19 | addsubassd 11282 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((♯‘𝐻) + (𝑀 − 1)) − 𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀))) |
72 | 68, 71 | syl5eq 2791 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 − 𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀))) |
73 | 20 | negcld 11249 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → -1 ∈
ℂ) |
74 | 19, 20 | negsubd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 + -1) = (𝑀 − 1)) |
75 | 74 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 − 1) = (𝑀 + -1)) |
76 | 19, 73, 75 | mvrladdd 11318 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑀 − 1) − 𝑀) = -1) |
77 | 76 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)) = ((♯‘𝐻) + -1)) |
78 | 72, 77 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 − 𝑀) = ((♯‘𝐻) + -1)) |
79 | 78 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑁 − 𝑀) + 1) = (((♯‘𝐻) + -1) + 1)) |
80 | 79 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → ((𝑁 − 𝑀) + 1) = (((♯‘𝐻) + -1) + 1)) |
81 | 70, 20 | negsubd 11268 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘𝐻) + -1) = ((♯‘𝐻) − 1)) |
82 | 81 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((♯‘𝐻) + -1) + 1) =
(((♯‘𝐻) −
1) + 1)) |
83 | 70, 20 | npcand 11266 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((♯‘𝐻) − 1) + 1) =
(♯‘𝐻)) |
84 | 82, 83 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((♯‘𝐻) + -1) + 1) =
(♯‘𝐻)) |
85 | 84 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (((♯‘𝐻) + -1) + 1) =
(♯‘𝐻)) |
86 | 67, 80, 85 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻)) |
87 | 37, 86 | pm2.61dan 809 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(𝑀...𝑁)) = (♯‘𝐻)) |
88 | 87 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻))) |
89 | | isoeq4 7171 |
. . . . . . . . 9
⊢
((1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)) → (ℎ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))) |
90 | 88, 89 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (ℎ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))) |
91 | 90 | biimpd 228 |
. . . . . . 7
⊢ (𝜑 → (ℎ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))) |
92 | 91 | eximdv 1921 |
. . . . . 6
⊢ (𝜑 → (∃ℎ ℎ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → ∃ℎ ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))) |
93 | 9, 92 | mpi 20 |
. . . . 5
⊢ (𝜑 → ∃ℎ ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))) |
94 | | fzisoeu.or |
. . . . . 6
⊢ (𝜑 → < Or 𝐻) |
95 | | fz1iso 14104 |
. . . . . 6
⊢ (( <
Or 𝐻 ∧ 𝐻 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) |
96 | 94, 44, 95 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) |
97 | | exdistrv 1960 |
. . . . 5
⊢
(∃ℎ∃𝑔(ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) ↔ (∃ℎ ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) |
98 | 93, 96, 97 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → ∃ℎ∃𝑔(ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) |
99 | | isocnv 7181 |
. . . . . . . 8
⊢ (ℎ Isom < , <
((1...(♯‘𝐻)),
(𝑀...𝑁)) → ◡ℎ Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻)))) |
100 | 99 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → ◡ℎ Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻)))) |
101 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) |
102 | | isotr 7187 |
. . . . . . 7
⊢ ((◡ℎ Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻)) |
103 | 100, 101,
102 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → (𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻)) |
104 | 103 | ex 412 |
. . . . 5
⊢ (𝜑 → ((ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻))) |
105 | 104 | 2eximdv 1923 |
. . . 4
⊢ (𝜑 → (∃ℎ∃𝑔(ℎ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → ∃ℎ∃𝑔(𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻))) |
106 | 98, 105 | mpd 15 |
. . 3
⊢ (𝜑 → ∃ℎ∃𝑔(𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻)) |
107 | | vex 3426 |
. . . . . . 7
⊢ 𝑔 ∈ V |
108 | | vex 3426 |
. . . . . . . 8
⊢ ℎ ∈ V |
109 | 108 | cnvex 7746 |
. . . . . . 7
⊢ ◡ℎ ∈ V |
110 | 107, 109 | coex 7751 |
. . . . . 6
⊢ (𝑔 ∘ ◡ℎ) ∈ V |
111 | | isoeq1 7168 |
. . . . . 6
⊢ (𝑓 = (𝑔 ∘ ◡ℎ) → (𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻))) |
112 | 110, 111 | spcev 3535 |
. . . . 5
⊢ ((𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)) |
113 | 112 | a1i 11 |
. . . 4
⊢ (𝜑 → ((𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))) |
114 | 113 | exlimdvv 1938 |
. . 3
⊢ (𝜑 → (∃ℎ∃𝑔(𝑔 ∘ ◡ℎ) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))) |
115 | 106, 114 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)) |
116 | | ltwefz 13611 |
. . 3
⊢ < We
(𝑀...𝑁) |
117 | | wemoiso 7789 |
. . 3
⊢ ( < We
(𝑀...𝑁) → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)) |
118 | 116, 117 | mp1i 13 |
. 2
⊢ (𝜑 → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)) |
119 | | df-eu 2569 |
. 2
⊢
(∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ∧ ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))) |
120 | 115, 118,
119 | sylanbrc 582 |
1
⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)) |