Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzisoeu Structured version   Visualization version   GIF version

Theorem fzisoeu 45292
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 14369 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fzisoeu.h (𝜑𝐻 ∈ Fin)
fzisoeu.or (𝜑 → < Or 𝐻)
fzisoeu.m (𝜑𝑀 ∈ ℤ)
fzisoeu.4 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
Assertion
Ref Expression
fzisoeu (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑀   𝑓,𝑁
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fzisoeu
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 13429 . . . . . . . . 9 (𝑀...𝑁) ⊆ ℤ
2 zssre 12478 . . . . . . . . 9 ℤ ⊆ ℝ
31, 2sstri 3945 . . . . . . . 8 (𝑀...𝑁) ⊆ ℝ
4 ltso 11196 . . . . . . . 8 < Or ℝ
5 soss 5547 . . . . . . . 8 ((𝑀...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (𝑀...𝑁)))
63, 4, 5mp2 9 . . . . . . 7 < Or (𝑀...𝑁)
7 fzfi 13879 . . . . . . 7 (𝑀...𝑁) ∈ Fin
8 fz1iso 14369 . . . . . . 7 (( < Or (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → ∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)))
96, 7, 8mp2an 692 . . . . . 6 Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁))
10 fzisoeu.4 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
11 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝐻 = ∅ → (♯‘𝐻) = (♯‘∅))
12 hash0 14274 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
1311, 12eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝐻 = ∅ → (♯‘𝐻) = 0)
1413oveq1d 7364 . . . . . . . . . . . . . . . 16 (𝐻 = ∅ → ((♯‘𝐻) + (𝑀 − 1)) = (0 + (𝑀 − 1)))
1510, 14eqtrid 2776 . . . . . . . . . . . . . . 15 (𝐻 = ∅ → 𝑁 = (0 + (𝑀 − 1)))
1615oveq2d 7365 . . . . . . . . . . . . . 14 (𝐻 = ∅ → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
1716adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
18 fzisoeu.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
1918zcnd 12581 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
20 1cnd 11110 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
2119, 20subcld 11475 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℂ)
2221addlidd 11317 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑀 − 1)) = (𝑀 − 1))
2322oveq2d 7365 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = (𝑀...(𝑀 − 1)))
2418zred 12580 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
2524ltm1d 12057 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) < 𝑀)
26 peano2zm 12518 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2718, 26syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℤ)
28 fzn 13443 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
2918, 27, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3025, 29mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3123, 30eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = ∅)
3231adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...(0 + (𝑀 − 1))) = ∅)
33 eqcom 2736 . . . . . . . . . . . . . . 15 (𝐻 = ∅ ↔ ∅ = 𝐻)
3433biimpi 216 . . . . . . . . . . . . . 14 (𝐻 = ∅ → ∅ = 𝐻)
3534adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → ∅ = 𝐻)
3617, 32, 353eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = 𝐻)
3736fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
3820, 19pncan3d 11478 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
3938eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑𝑀 = (1 + (𝑀 − 1)))
4039adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 = (1 + (𝑀 − 1)))
41 1red 11116 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ∈ ℝ)
42 neqne 2933 . . . . . . . . . . . . . . . . . . . 20 𝐻 = ∅ → 𝐻 ≠ ∅)
4342adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ≠ ∅)
44 fzisoeu.h . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐻 ∈ Fin)
4544adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ∈ Fin)
46 hashnncl 14273 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4843, 47mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℕ)
4948nnred 12143 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℝ)
5027zred 12580 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 − 1) ∈ ℝ)
5150adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑀 − 1) ∈ ℝ)
5248nnge1d 12176 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ≤ (♯‘𝐻))
5341, 49, 51, 52leadd1dd 11734 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ ((♯‘𝐻) + (𝑀 − 1)))
5453, 10breqtrrdi 5134 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ 𝑁)
5540, 54eqbrtrd 5114 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀𝑁)
5618adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 ∈ ℤ)
57 hashcl 14263 . . . . . . . . . . . . . . . . . . 19 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
58 nn0z 12496 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) ∈ ℕ0 → (♯‘𝐻) ∈ ℤ)
5944, 57, 583syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℤ)
6059, 27zaddcld 12584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝐻) + (𝑀 − 1)) ∈ ℤ)
6110, 60eqeltrid 2832 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
6261adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ ℤ)
63 eluz 12749 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6456, 62, 63syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6555, 64mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ (ℤ𝑀))
66 hashfz 14334 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6765, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6810oveq1i 7359 . . . . . . . . . . . . . . . 16 (𝑁𝑀) = (((♯‘𝐻) + (𝑀 − 1)) − 𝑀)
6944, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7069nn0cnd 12447 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝐻) ∈ ℂ)
7170, 21, 19addsubassd 11495 . . . . . . . . . . . . . . . 16 (𝜑 → (((♯‘𝐻) + (𝑀 − 1)) − 𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7268, 71eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7320negcld 11462 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
7419, 20negsubd 11481 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + -1) = (𝑀 − 1))
7574eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) = (𝑀 + -1))
7619, 73, 75mvrladdd 11533 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) − 𝑀) = -1)
7776oveq2d 7365 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)) = ((♯‘𝐻) + -1))
7872, 77eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + -1))
7978oveq1d 7364 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8079adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8170, 20negsubd 11481 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + -1) = ((♯‘𝐻) − 1))
8281oveq1d 7364 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) + -1) + 1) = (((♯‘𝐻) − 1) + 1))
8370, 20npcand 11479 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
8482, 83eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8584adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8667, 80, 853eqtrd 2768 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8737, 86pm2.61dan 812 . . . . . . . . . 10 (𝜑 → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8887oveq2d 7365 . . . . . . . . 9 (𝜑 → (1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)))
89 isoeq4 7257 . . . . . . . . 9 ((1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)) → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9088, 89syl 17 . . . . . . . 8 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9190biimpd 229 . . . . . . 7 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9291eximdv 1917 . . . . . 6 (𝜑 → (∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
939, 92mpi 20 . . . . 5 (𝜑 → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))
94 fzisoeu.or . . . . . 6 (𝜑 → < Or 𝐻)
95 fz1iso 14369 . . . . . 6 (( < Or 𝐻𝐻 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
9694, 44, 95syl2anc 584 . . . . 5 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
97 exdistrv 1955 . . . . 5 (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) ↔ (∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
9893, 96, 97sylanbrc 583 . . . 4 (𝜑 → ∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
99 isocnv 7267 . . . . . . . 8 ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
10099ad2antrl 728 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
101 simprr 772 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
102 isotr 7273 . . . . . . 7 (( Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
103100, 101, 102syl2anc 584 . . . . . 6 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
104103ex 412 . . . . 5 (𝜑 → (( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
1051042eximdv 1919 . . . 4 (𝜑 → (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
10698, 105mpd 15 . . 3 (𝜑 → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
107 vex 3440 . . . . . . 7 𝑔 ∈ V
108 vex 3440 . . . . . . . 8 ∈ V
109108cnvex 7858 . . . . . . 7 ∈ V
110107, 109coex 7863 . . . . . 6 (𝑔) ∈ V
111 isoeq1 7254 . . . . . 6 (𝑓 = (𝑔) → (𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
112110, 111spcev 3561 . . . . 5 ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
113112a1i 11 . . . 4 (𝜑 → ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
114113exlimdvv 1934 . . 3 (𝜑 → (∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
115106, 114mpd 15 . 2 (𝜑 → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
116 ltwefz 13870 . . 3 < We (𝑀...𝑁)
117 wemoiso 7908 . . 3 ( < We (𝑀...𝑁) → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
118116, 117mp1i 13 . 2 (𝜑 → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
119 df-eu 2562 . 2 (∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ∧ ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
120115, 118, 119sylanbrc 583 1 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wne 2925  wss 3903  c0 4284   class class class wbr 5092   Or wor 5526   We wwe 5571  ccnv 5618  ccom 5623  cfv 6482   Isom wiso 6483  (class class class)co 7349  Fincfn 8872  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347  -cneg 11348  cn 12128  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  fourierdlem36  46134
  Copyright terms: Public domain W3C validator