Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzisoeu Structured version   Visualization version   GIF version

Theorem fzisoeu 45298
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 14427 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fzisoeu.h (𝜑𝐻 ∈ Fin)
fzisoeu.or (𝜑 → < Or 𝐻)
fzisoeu.m (𝜑𝑀 ∈ ℤ)
fzisoeu.4 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
Assertion
Ref Expression
fzisoeu (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑀   𝑓,𝑁
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fzisoeu
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 13487 . . . . . . . . 9 (𝑀...𝑁) ⊆ ℤ
2 zssre 12536 . . . . . . . . 9 ℤ ⊆ ℝ
31, 2sstri 3956 . . . . . . . 8 (𝑀...𝑁) ⊆ ℝ
4 ltso 11254 . . . . . . . 8 < Or ℝ
5 soss 5566 . . . . . . . 8 ((𝑀...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (𝑀...𝑁)))
63, 4, 5mp2 9 . . . . . . 7 < Or (𝑀...𝑁)
7 fzfi 13937 . . . . . . 7 (𝑀...𝑁) ∈ Fin
8 fz1iso 14427 . . . . . . 7 (( < Or (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → ∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)))
96, 7, 8mp2an 692 . . . . . 6 Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁))
10 fzisoeu.4 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
11 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝐻 = ∅ → (♯‘𝐻) = (♯‘∅))
12 hash0 14332 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
1311, 12eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝐻 = ∅ → (♯‘𝐻) = 0)
1413oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝐻 = ∅ → ((♯‘𝐻) + (𝑀 − 1)) = (0 + (𝑀 − 1)))
1510, 14eqtrid 2776 . . . . . . . . . . . . . . 15 (𝐻 = ∅ → 𝑁 = (0 + (𝑀 − 1)))
1615oveq2d 7403 . . . . . . . . . . . . . 14 (𝐻 = ∅ → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
1716adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
18 fzisoeu.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
1918zcnd 12639 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
20 1cnd 11169 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
2119, 20subcld 11533 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℂ)
2221addlidd 11375 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑀 − 1)) = (𝑀 − 1))
2322oveq2d 7403 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = (𝑀...(𝑀 − 1)))
2418zred 12638 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
2524ltm1d 12115 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) < 𝑀)
26 peano2zm 12576 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2718, 26syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℤ)
28 fzn 13501 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
2918, 27, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3025, 29mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3123, 30eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = ∅)
3231adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...(0 + (𝑀 − 1))) = ∅)
33 eqcom 2736 . . . . . . . . . . . . . . 15 (𝐻 = ∅ ↔ ∅ = 𝐻)
3433biimpi 216 . . . . . . . . . . . . . 14 (𝐻 = ∅ → ∅ = 𝐻)
3534adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → ∅ = 𝐻)
3617, 32, 353eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = 𝐻)
3736fveq2d 6862 . . . . . . . . . . 11 ((𝜑𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
3820, 19pncan3d 11536 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
3938eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑𝑀 = (1 + (𝑀 − 1)))
4039adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 = (1 + (𝑀 − 1)))
41 1red 11175 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ∈ ℝ)
42 neqne 2933 . . . . . . . . . . . . . . . . . . . 20 𝐻 = ∅ → 𝐻 ≠ ∅)
4342adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ≠ ∅)
44 fzisoeu.h . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐻 ∈ Fin)
4544adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ∈ Fin)
46 hashnncl 14331 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4843, 47mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℕ)
4948nnred 12201 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℝ)
5027zred 12638 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 − 1) ∈ ℝ)
5150adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑀 − 1) ∈ ℝ)
5248nnge1d 12234 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ≤ (♯‘𝐻))
5341, 49, 51, 52leadd1dd 11792 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ ((♯‘𝐻) + (𝑀 − 1)))
5453, 10breqtrrdi 5149 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ 𝑁)
5540, 54eqbrtrd 5129 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀𝑁)
5618adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 ∈ ℤ)
57 hashcl 14321 . . . . . . . . . . . . . . . . . . 19 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
58 nn0z 12554 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) ∈ ℕ0 → (♯‘𝐻) ∈ ℤ)
5944, 57, 583syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℤ)
6059, 27zaddcld 12642 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝐻) + (𝑀 − 1)) ∈ ℤ)
6110, 60eqeltrid 2832 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
6261adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ ℤ)
63 eluz 12807 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6456, 62, 63syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6555, 64mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ (ℤ𝑀))
66 hashfz 14392 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6765, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6810oveq1i 7397 . . . . . . . . . . . . . . . 16 (𝑁𝑀) = (((♯‘𝐻) + (𝑀 − 1)) − 𝑀)
6944, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7069nn0cnd 12505 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝐻) ∈ ℂ)
7170, 21, 19addsubassd 11553 . . . . . . . . . . . . . . . 16 (𝜑 → (((♯‘𝐻) + (𝑀 − 1)) − 𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7268, 71eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7320negcld 11520 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
7419, 20negsubd 11539 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + -1) = (𝑀 − 1))
7574eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) = (𝑀 + -1))
7619, 73, 75mvrladdd 11591 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) − 𝑀) = -1)
7776oveq2d 7403 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)) = ((♯‘𝐻) + -1))
7872, 77eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + -1))
7978oveq1d 7402 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8079adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8170, 20negsubd 11539 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + -1) = ((♯‘𝐻) − 1))
8281oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) + -1) + 1) = (((♯‘𝐻) − 1) + 1))
8370, 20npcand 11537 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
8482, 83eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8584adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8667, 80, 853eqtrd 2768 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8737, 86pm2.61dan 812 . . . . . . . . . 10 (𝜑 → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8887oveq2d 7403 . . . . . . . . 9 (𝜑 → (1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)))
89 isoeq4 7295 . . . . . . . . 9 ((1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)) → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9088, 89syl 17 . . . . . . . 8 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9190biimpd 229 . . . . . . 7 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9291eximdv 1917 . . . . . 6 (𝜑 → (∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
939, 92mpi 20 . . . . 5 (𝜑 → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))
94 fzisoeu.or . . . . . 6 (𝜑 → < Or 𝐻)
95 fz1iso 14427 . . . . . 6 (( < Or 𝐻𝐻 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
9694, 44, 95syl2anc 584 . . . . 5 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
97 exdistrv 1955 . . . . 5 (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) ↔ (∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
9893, 96, 97sylanbrc 583 . . . 4 (𝜑 → ∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
99 isocnv 7305 . . . . . . . 8 ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
10099ad2antrl 728 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
101 simprr 772 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
102 isotr 7311 . . . . . . 7 (( Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
103100, 101, 102syl2anc 584 . . . . . 6 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
104103ex 412 . . . . 5 (𝜑 → (( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
1051042eximdv 1919 . . . 4 (𝜑 → (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
10698, 105mpd 15 . . 3 (𝜑 → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
107 vex 3451 . . . . . . 7 𝑔 ∈ V
108 vex 3451 . . . . . . . 8 ∈ V
109108cnvex 7901 . . . . . . 7 ∈ V
110107, 109coex 7906 . . . . . 6 (𝑔) ∈ V
111 isoeq1 7292 . . . . . 6 (𝑓 = (𝑔) → (𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
112110, 111spcev 3572 . . . . 5 ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
113112a1i 11 . . . 4 (𝜑 → ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
114113exlimdvv 1934 . . 3 (𝜑 → (∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
115106, 114mpd 15 . 2 (𝜑 → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
116 ltwefz 13928 . . 3 < We (𝑀...𝑁)
117 wemoiso 7952 . . 3 ( < We (𝑀...𝑁) → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
118116, 117mp1i 13 . 2 (𝜑 → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
119 df-eu 2562 . 2 (∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ∧ ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
120115, 118, 119sylanbrc 583 1 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wne 2925  wss 3914  c0 4296   class class class wbr 5107   Or wor 5545   We wwe 5590  ccnv 5637  ccom 5642  cfv 6511   Isom wiso 6512  (class class class)co 7387  Fincfn 8918  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  fourierdlem36  46141
  Copyright terms: Public domain W3C validator