Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzisoeu Structured version   Visualization version   GIF version

Theorem fzisoeu 41930
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 13816 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fzisoeu.h (𝜑𝐻 ∈ Fin)
fzisoeu.or (𝜑 → < Or 𝐻)
fzisoeu.m (𝜑𝑀 ∈ ℤ)
fzisoeu.4 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
Assertion
Ref Expression
fzisoeu (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑀   𝑓,𝑁
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fzisoeu
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 12904 . . . . . . . . 9 (𝑀...𝑁) ⊆ ℤ
2 zssre 11976 . . . . . . . . 9 ℤ ⊆ ℝ
31, 2sstri 3924 . . . . . . . 8 (𝑀...𝑁) ⊆ ℝ
4 ltso 10710 . . . . . . . 8 < Or ℝ
5 soss 5457 . . . . . . . 8 ((𝑀...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (𝑀...𝑁)))
63, 4, 5mp2 9 . . . . . . 7 < Or (𝑀...𝑁)
7 fzfi 13335 . . . . . . 7 (𝑀...𝑁) ∈ Fin
8 fz1iso 13816 . . . . . . 7 (( < Or (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → ∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)))
96, 7, 8mp2an 691 . . . . . 6 Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁))
10 fzisoeu.4 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
11 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝐻 = ∅ → (♯‘𝐻) = (♯‘∅))
12 hash0 13724 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
1311, 12eqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝐻 = ∅ → (♯‘𝐻) = 0)
1413oveq1d 7150 . . . . . . . . . . . . . . . 16 (𝐻 = ∅ → ((♯‘𝐻) + (𝑀 − 1)) = (0 + (𝑀 − 1)))
1510, 14syl5eq 2845 . . . . . . . . . . . . . . 15 (𝐻 = ∅ → 𝑁 = (0 + (𝑀 − 1)))
1615oveq2d 7151 . . . . . . . . . . . . . 14 (𝐻 = ∅ → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
1716adantl 485 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
18 fzisoeu.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
1918zcnd 12076 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
20 1cnd 10625 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
2119, 20subcld 10986 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℂ)
2221addid2d 10830 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑀 − 1)) = (𝑀 − 1))
2322oveq2d 7151 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = (𝑀...(𝑀 − 1)))
2418zred 12075 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
2524ltm1d 11561 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) < 𝑀)
26 peano2zm 12013 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2718, 26syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℤ)
28 fzn 12918 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
2918, 27, 28syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3025, 29mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3123, 30eqtrd 2833 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = ∅)
3231adantr 484 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...(0 + (𝑀 − 1))) = ∅)
33 eqcom 2805 . . . . . . . . . . . . . . 15 (𝐻 = ∅ ↔ ∅ = 𝐻)
3433biimpi 219 . . . . . . . . . . . . . 14 (𝐻 = ∅ → ∅ = 𝐻)
3534adantl 485 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → ∅ = 𝐻)
3617, 32, 353eqtrd 2837 . . . . . . . . . . . 12 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = 𝐻)
3736fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
3820, 19pncan3d 10989 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
3938eqcomd 2804 . . . . . . . . . . . . . . . 16 (𝜑𝑀 = (1 + (𝑀 − 1)))
4039adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 = (1 + (𝑀 − 1)))
41 1red 10631 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ∈ ℝ)
42 neqne 2995 . . . . . . . . . . . . . . . . . . . 20 𝐻 = ∅ → 𝐻 ≠ ∅)
4342adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ≠ ∅)
44 fzisoeu.h . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐻 ∈ Fin)
4544adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ∈ Fin)
46 hashnncl 13723 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4843, 47mpbird 260 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℕ)
4948nnred 11640 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℝ)
5027zred 12075 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 − 1) ∈ ℝ)
5150adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑀 − 1) ∈ ℝ)
5248nnge1d 11673 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ≤ (♯‘𝐻))
5341, 49, 51, 52leadd1dd 11243 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ ((♯‘𝐻) + (𝑀 − 1)))
5453, 10breqtrrdi 5072 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ 𝑁)
5540, 54eqbrtrd 5052 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀𝑁)
5618adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 ∈ ℤ)
57 hashcl 13713 . . . . . . . . . . . . . . . . . . 19 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
58 nn0z 11993 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) ∈ ℕ0 → (♯‘𝐻) ∈ ℤ)
5944, 57, 583syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℤ)
6059, 27zaddcld 12079 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝐻) + (𝑀 − 1)) ∈ ℤ)
6110, 60eqeltrid 2894 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
6261adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ ℤ)
63 eluz 12245 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6456, 62, 63syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6555, 64mpbird 260 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ (ℤ𝑀))
66 hashfz 13784 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6765, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6810oveq1i 7145 . . . . . . . . . . . . . . . 16 (𝑁𝑀) = (((♯‘𝐻) + (𝑀 − 1)) − 𝑀)
6944, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7069nn0cnd 11945 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝐻) ∈ ℂ)
7170, 21, 19addsubassd 11006 . . . . . . . . . . . . . . . 16 (𝜑 → (((♯‘𝐻) + (𝑀 − 1)) − 𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7268, 71syl5eq 2845 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7320negcld 10973 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
7419, 20negsubd 10992 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + -1) = (𝑀 − 1))
7574eqcomd 2804 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) = (𝑀 + -1))
7619, 73, 75mvrladdd 11042 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) − 𝑀) = -1)
7776oveq2d 7151 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)) = ((♯‘𝐻) + -1))
7872, 77eqtrd 2833 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + -1))
7978oveq1d 7150 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8079adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8170, 20negsubd 10992 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + -1) = ((♯‘𝐻) − 1))
8281oveq1d 7150 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) + -1) + 1) = (((♯‘𝐻) − 1) + 1))
8370, 20npcand 10990 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
8482, 83eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8584adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8667, 80, 853eqtrd 2837 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8737, 86pm2.61dan 812 . . . . . . . . . 10 (𝜑 → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8887oveq2d 7151 . . . . . . . . 9 (𝜑 → (1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)))
89 isoeq4 7052 . . . . . . . . 9 ((1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)) → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9088, 89syl 17 . . . . . . . 8 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9190biimpd 232 . . . . . . 7 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9291eximdv 1918 . . . . . 6 (𝜑 → (∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
939, 92mpi 20 . . . . 5 (𝜑 → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))
94 fzisoeu.or . . . . . 6 (𝜑 → < Or 𝐻)
95 fz1iso 13816 . . . . . 6 (( < Or 𝐻𝐻 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
9694, 44, 95syl2anc 587 . . . . 5 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
97 exdistrv 1956 . . . . 5 (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) ↔ (∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
9893, 96, 97sylanbrc 586 . . . 4 (𝜑 → ∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
99 isocnv 7062 . . . . . . . 8 ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
10099ad2antrl 727 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
101 simprr 772 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
102 isotr 7068 . . . . . . 7 (( Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
103100, 101, 102syl2anc 587 . . . . . 6 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
104103ex 416 . . . . 5 (𝜑 → (( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
1051042eximdv 1920 . . . 4 (𝜑 → (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
10698, 105mpd 15 . . 3 (𝜑 → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
107 vex 3444 . . . . . . 7 𝑔 ∈ V
108 vex 3444 . . . . . . . 8 ∈ V
109108cnvex 7612 . . . . . . 7 ∈ V
110107, 109coex 7617 . . . . . 6 (𝑔) ∈ V
111 isoeq1 7049 . . . . . 6 (𝑓 = (𝑔) → (𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
112110, 111spcev 3555 . . . . 5 ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
113112a1i 11 . . . 4 (𝜑 → ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
114113exlimdvv 1935 . . 3 (𝜑 → (∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
115106, 114mpd 15 . 2 (𝜑 → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
116 ltwefz 13326 . . 3 < We (𝑀...𝑁)
117 wemoiso 7656 . . 3 ( < We (𝑀...𝑁) → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
118116, 117mp1i 13 . 2 (𝜑 → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
119 df-eu 2629 . 2 (∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ∧ ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
120115, 118, 119sylanbrc 586 1 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2596  ∃!weu 2628  wne 2987  wss 3881  c0 4243   class class class wbr 5030   Or wor 5437   We wwe 5477  ccnv 5518  ccom 5523  cfv 6324   Isom wiso 6325  (class class class)co 7135  Fincfn 8492  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  -cneg 10860  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687
This theorem is referenced by:  fourierdlem36  42783
  Copyright terms: Public domain W3C validator