Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzisoeu Structured version   Visualization version   GIF version

Theorem fzisoeu 44309
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 14427 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fzisoeu.h (𝜑𝐻 ∈ Fin)
fzisoeu.or (𝜑 → < Or 𝐻)
fzisoeu.m (𝜑𝑀 ∈ ℤ)
fzisoeu.4 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
Assertion
Ref Expression
fzisoeu (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑀   𝑓,𝑁
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fzisoeu
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 13507 . . . . . . . . 9 (𝑀...𝑁) ⊆ ℤ
2 zssre 12569 . . . . . . . . 9 ℤ ⊆ ℝ
31, 2sstri 3991 . . . . . . . 8 (𝑀...𝑁) ⊆ ℝ
4 ltso 11298 . . . . . . . 8 < Or ℝ
5 soss 5608 . . . . . . . 8 ((𝑀...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (𝑀...𝑁)))
63, 4, 5mp2 9 . . . . . . 7 < Or (𝑀...𝑁)
7 fzfi 13941 . . . . . . 7 (𝑀...𝑁) ∈ Fin
8 fz1iso 14427 . . . . . . 7 (( < Or (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → ∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)))
96, 7, 8mp2an 690 . . . . . 6 Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁))
10 fzisoeu.4 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
11 fveq2 6891 . . . . . . . . . . . . . . . . . 18 (𝐻 = ∅ → (♯‘𝐻) = (♯‘∅))
12 hash0 14331 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
1311, 12eqtrdi 2788 . . . . . . . . . . . . . . . . 17 (𝐻 = ∅ → (♯‘𝐻) = 0)
1413oveq1d 7426 . . . . . . . . . . . . . . . 16 (𝐻 = ∅ → ((♯‘𝐻) + (𝑀 − 1)) = (0 + (𝑀 − 1)))
1510, 14eqtrid 2784 . . . . . . . . . . . . . . 15 (𝐻 = ∅ → 𝑁 = (0 + (𝑀 − 1)))
1615oveq2d 7427 . . . . . . . . . . . . . 14 (𝐻 = ∅ → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
1716adantl 482 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
18 fzisoeu.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
1918zcnd 12671 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
20 1cnd 11213 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
2119, 20subcld 11575 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℂ)
2221addlidd 11419 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑀 − 1)) = (𝑀 − 1))
2322oveq2d 7427 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = (𝑀...(𝑀 − 1)))
2418zred 12670 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
2524ltm1d 12150 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) < 𝑀)
26 peano2zm 12609 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2718, 26syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℤ)
28 fzn 13521 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
2918, 27, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3025, 29mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3123, 30eqtrd 2772 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = ∅)
3231adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...(0 + (𝑀 − 1))) = ∅)
33 eqcom 2739 . . . . . . . . . . . . . . 15 (𝐻 = ∅ ↔ ∅ = 𝐻)
3433biimpi 215 . . . . . . . . . . . . . 14 (𝐻 = ∅ → ∅ = 𝐻)
3534adantl 482 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → ∅ = 𝐻)
3617, 32, 353eqtrd 2776 . . . . . . . . . . . 12 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = 𝐻)
3736fveq2d 6895 . . . . . . . . . . 11 ((𝜑𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
3820, 19pncan3d 11578 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
3938eqcomd 2738 . . . . . . . . . . . . . . . 16 (𝜑𝑀 = (1 + (𝑀 − 1)))
4039adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 = (1 + (𝑀 − 1)))
41 1red 11219 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ∈ ℝ)
42 neqne 2948 . . . . . . . . . . . . . . . . . . . 20 𝐻 = ∅ → 𝐻 ≠ ∅)
4342adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ≠ ∅)
44 fzisoeu.h . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐻 ∈ Fin)
4544adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ∈ Fin)
46 hashnncl 14330 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4843, 47mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℕ)
4948nnred 12231 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℝ)
5027zred 12670 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 − 1) ∈ ℝ)
5150adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑀 − 1) ∈ ℝ)
5248nnge1d 12264 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ≤ (♯‘𝐻))
5341, 49, 51, 52leadd1dd 11832 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ ((♯‘𝐻) + (𝑀 − 1)))
5453, 10breqtrrdi 5190 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ 𝑁)
5540, 54eqbrtrd 5170 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀𝑁)
5618adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 ∈ ℤ)
57 hashcl 14320 . . . . . . . . . . . . . . . . . . 19 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
58 nn0z 12587 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) ∈ ℕ0 → (♯‘𝐻) ∈ ℤ)
5944, 57, 583syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℤ)
6059, 27zaddcld 12674 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝐻) + (𝑀 − 1)) ∈ ℤ)
6110, 60eqeltrid 2837 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
6261adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ ℤ)
63 eluz 12840 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6456, 62, 63syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6555, 64mpbird 256 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ (ℤ𝑀))
66 hashfz 14391 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6765, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6810oveq1i 7421 . . . . . . . . . . . . . . . 16 (𝑁𝑀) = (((♯‘𝐻) + (𝑀 − 1)) − 𝑀)
6944, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7069nn0cnd 12538 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝐻) ∈ ℂ)
7170, 21, 19addsubassd 11595 . . . . . . . . . . . . . . . 16 (𝜑 → (((♯‘𝐻) + (𝑀 − 1)) − 𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7268, 71eqtrid 2784 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7320negcld 11562 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
7419, 20negsubd 11581 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + -1) = (𝑀 − 1))
7574eqcomd 2738 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) = (𝑀 + -1))
7619, 73, 75mvrladdd 11631 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) − 𝑀) = -1)
7776oveq2d 7427 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)) = ((♯‘𝐻) + -1))
7872, 77eqtrd 2772 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + -1))
7978oveq1d 7426 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8079adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8170, 20negsubd 11581 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + -1) = ((♯‘𝐻) − 1))
8281oveq1d 7426 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) + -1) + 1) = (((♯‘𝐻) − 1) + 1))
8370, 20npcand 11579 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
8482, 83eqtrd 2772 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8584adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8667, 80, 853eqtrd 2776 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8737, 86pm2.61dan 811 . . . . . . . . . 10 (𝜑 → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8887oveq2d 7427 . . . . . . . . 9 (𝜑 → (1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)))
89 isoeq4 7319 . . . . . . . . 9 ((1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)) → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9088, 89syl 17 . . . . . . . 8 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9190biimpd 228 . . . . . . 7 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9291eximdv 1920 . . . . . 6 (𝜑 → (∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
939, 92mpi 20 . . . . 5 (𝜑 → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))
94 fzisoeu.or . . . . . 6 (𝜑 → < Or 𝐻)
95 fz1iso 14427 . . . . . 6 (( < Or 𝐻𝐻 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
9694, 44, 95syl2anc 584 . . . . 5 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
97 exdistrv 1959 . . . . 5 (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) ↔ (∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
9893, 96, 97sylanbrc 583 . . . 4 (𝜑 → ∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
99 isocnv 7329 . . . . . . . 8 ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
10099ad2antrl 726 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
101 simprr 771 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
102 isotr 7335 . . . . . . 7 (( Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
103100, 101, 102syl2anc 584 . . . . . 6 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
104103ex 413 . . . . 5 (𝜑 → (( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
1051042eximdv 1922 . . . 4 (𝜑 → (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
10698, 105mpd 15 . . 3 (𝜑 → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
107 vex 3478 . . . . . . 7 𝑔 ∈ V
108 vex 3478 . . . . . . . 8 ∈ V
109108cnvex 7918 . . . . . . 7 ∈ V
110107, 109coex 7923 . . . . . 6 (𝑔) ∈ V
111 isoeq1 7316 . . . . . 6 (𝑓 = (𝑔) → (𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
112110, 111spcev 3596 . . . . 5 ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
113112a1i 11 . . . 4 (𝜑 → ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
114113exlimdvv 1937 . . 3 (𝜑 → (∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
115106, 114mpd 15 . 2 (𝜑 → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
116 ltwefz 13932 . . 3 < We (𝑀...𝑁)
117 wemoiso 7962 . . 3 ( < We (𝑀...𝑁) → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
118116, 117mp1i 13 . 2 (𝜑 → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
119 df-eu 2563 . 2 (∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ∧ ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
120115, 118, 119sylanbrc 583 1 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  ∃*wmo 2532  ∃!weu 2562  wne 2940  wss 3948  c0 4322   class class class wbr 5148   Or wor 5587   We wwe 5630  ccnv 5675  ccom 5680  cfv 6543   Isom wiso 6544  (class class class)co 7411  Fincfn 8941  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  -cneg 11449  cn 12216  0cn0 12476  cz 12562  cuz 12826  ...cfz 13488  chash 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295
This theorem is referenced by:  fourierdlem36  45158
  Copyright terms: Public domain W3C validator