Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsp2cyc Structured version   Visualization version   GIF version

Theorem trsp2cyc 30815
Description: Exhibit the word a transposition corresponds to, as a cycle. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
trsp2cyc.t 𝑇 = ran (pmTrsp‘𝐷)
trsp2cyc.c 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
trsp2cyc ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑃,𝑖,𝑗   𝑇,𝑖,𝑗   𝑖,𝑉,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem trsp2cyc
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . 7 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
2 breq1 5033 . . . . . . . 8 (𝑦 = 𝑝 → (𝑦 ≈ 2o𝑝 ≈ 2o))
32elrab 3628 . . . . . . 7 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↔ (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
41, 3sylib 221 . . . . . 6 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
54simprd 499 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ≈ 2o)
6 en2 8738 . . . . 5 (𝑝 ≈ 2o → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
75, 6syl 17 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
84simpld 498 . . . . . . . . . 10 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ 𝒫 𝐷)
98elpwid 4508 . . . . . . . . 9 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝𝐷)
109adantr 484 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝𝐷)
11 vex 3444 . . . . . . . . . 10 𝑖 ∈ V
1211prid1 4658 . . . . . . . . 9 𝑖 ∈ {𝑖, 𝑗}
13 simpr 488 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 = {𝑖, 𝑗})
1412, 13eleqtrrid 2897 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑝)
1510, 14sseldd 3916 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝐷)
16 vex 3444 . . . . . . . . . 10 𝑗 ∈ V
1716prid2 4659 . . . . . . . . 9 𝑗 ∈ {𝑖, 𝑗}
1817, 13eleqtrrid 2897 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝑝)
1910, 18sseldd 3916 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝐷)
205adantr 484 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 ≈ 2o)
2113, 20eqbrtrrd 5054 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → {𝑖, 𝑗} ≈ 2o)
22 pr2ne 9416 . . . . . . . . . 10 ((𝑖𝐷𝑗𝐷) → ({𝑖, 𝑗} ≈ 2o𝑖𝑗))
2322biimpa 480 . . . . . . . . 9 (((𝑖𝐷𝑗𝐷) ∧ {𝑖, 𝑗} ≈ 2o) → 𝑖𝑗)
2415, 19, 21, 23syl21anc 836 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑗)
25 simplr 768 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
26 simp-4l 782 . . . . . . . . . . 11 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝐷𝑉)
27 eqid 2798 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
2827pmtrval 18571 . . . . . . . . . . 11 ((𝐷𝑉𝑝𝐷𝑝 ≈ 2o) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
2926, 10, 20, 28syl3anc 1368 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
3013fveq2d 6649 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3125, 29, 303eqtr2d 2839 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
32 trsp2cyc.c . . . . . . . . . 10 𝐶 = (toCyc‘𝐷)
3332, 26, 15, 19, 24, 27cycpm2tr 30811 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝐶‘⟨“𝑖𝑗”⟩) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3431, 33eqtr4d 2836 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))
3524, 34jca 515 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
3615, 19, 35jca31 518 . . . . . 6 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
3736ex 416 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 = {𝑖, 𝑗} → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
38372eximdv 1920 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (∃𝑖𝑗 𝑝 = {𝑖, 𝑗} → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
397, 38mpd 15 . . 3 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
40 r2ex 3262 . . 3 (∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)) ↔ ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
4139, 40sylibr 237 . 2 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
42 simpr 488 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑃𝑇)
43 trsp2cyc.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
4427pmtrfval 18570 . . . . . . 7 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4544adantr 484 . . . . . 6 ((𝐷𝑉𝑃𝑇) → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4645rneqd 5772 . . . . 5 ((𝐷𝑉𝑃𝑇) → ran (pmTrsp‘𝐷) = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4743, 46syl5eq 2845 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑇 = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4842, 47eleqtrd 2892 . . 3 ((𝐷𝑉𝑃𝑇) → 𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
49 eqid 2798 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5049elrnmpt 5792 . . . 4 (𝑃𝑇 → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5150adantl 485 . . 3 ((𝐷𝑉𝑃𝑇) → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5248, 51mpbid 235 . 2 ((𝐷𝑉𝑃𝑇) → ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5341, 52r19.29a 3248 1 ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  {crab 3110  cdif 3878  wss 3881  ifcif 4425  𝒫 cpw 4497  {csn 4525  {cpr 4527   cuni 4800   class class class wbr 5030  cmpt 5110  ran crn 5520  cfv 6324  2oc2o 8079  cen 8489  ⟨“cs2 14194  pmTrspcpmtr 18561  toCycctocyc 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-csh 14142  df-s2 14201  df-pmtr 18562  df-tocyc 30799
This theorem is referenced by:  cyc3genpm  30844
  Copyright terms: Public domain W3C validator