Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsp2cyc Structured version   Visualization version   GIF version

Theorem trsp2cyc 33065
Description: Exhibit the word a transposition corresponds to, as a cycle. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
trsp2cyc.t 𝑇 = ran (pmTrsp‘𝐷)
trsp2cyc.c 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
trsp2cyc ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑃,𝑖,𝑗   𝑇,𝑖,𝑗   𝑖,𝑉,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem trsp2cyc
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . 7 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
2 breq1 5095 . . . . . . . 8 (𝑦 = 𝑝 → (𝑦 ≈ 2o𝑝 ≈ 2o))
32elrab 3648 . . . . . . 7 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↔ (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
41, 3sylib 218 . . . . . 6 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
54simprd 495 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ≈ 2o)
6 en2 9169 . . . . 5 (𝑝 ≈ 2o → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
75, 6syl 17 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
84simpld 494 . . . . . . . . . 10 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ 𝒫 𝐷)
98elpwid 4560 . . . . . . . . 9 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝𝐷)
109adantr 480 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝𝐷)
11 vex 3440 . . . . . . . . . 10 𝑖 ∈ V
1211prid1 4714 . . . . . . . . 9 𝑖 ∈ {𝑖, 𝑗}
13 simpr 484 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 = {𝑖, 𝑗})
1412, 13eleqtrrid 2835 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑝)
1510, 14sseldd 3936 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝐷)
16 vex 3440 . . . . . . . . . 10 𝑗 ∈ V
1716prid2 4715 . . . . . . . . 9 𝑗 ∈ {𝑖, 𝑗}
1817, 13eleqtrrid 2835 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝑝)
1910, 18sseldd 3936 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝐷)
205adantr 480 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 ≈ 2o)
2113, 20eqbrtrrd 5116 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → {𝑖, 𝑗} ≈ 2o)
22 pr2ne 9899 . . . . . . . . . 10 ((𝑖𝐷𝑗𝐷) → ({𝑖, 𝑗} ≈ 2o𝑖𝑗))
2322biimpa 476 . . . . . . . . 9 (((𝑖𝐷𝑗𝐷) ∧ {𝑖, 𝑗} ≈ 2o) → 𝑖𝑗)
2415, 19, 21, 23syl21anc 837 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑗)
25 simplr 768 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
26 simp-4l 782 . . . . . . . . . . 11 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝐷𝑉)
27 eqid 2729 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
2827pmtrval 19330 . . . . . . . . . . 11 ((𝐷𝑉𝑝𝐷𝑝 ≈ 2o) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
2926, 10, 20, 28syl3anc 1373 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
3013fveq2d 6826 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3125, 29, 303eqtr2d 2770 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
32 trsp2cyc.c . . . . . . . . . 10 𝐶 = (toCyc‘𝐷)
3332, 26, 15, 19, 24, 27cycpm2tr 33061 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝐶‘⟨“𝑖𝑗”⟩) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3431, 33eqtr4d 2767 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))
3524, 34jca 511 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
3615, 19, 35jca31 514 . . . . . 6 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
3736ex 412 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 = {𝑖, 𝑗} → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
38372eximdv 1919 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (∃𝑖𝑗 𝑝 = {𝑖, 𝑗} → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
397, 38mpd 15 . . 3 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
40 r2ex 3166 . . 3 (∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)) ↔ ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
4139, 40sylibr 234 . 2 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
42 simpr 484 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑃𝑇)
43 trsp2cyc.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
4427pmtrfval 19329 . . . . . . 7 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4544adantr 480 . . . . . 6 ((𝐷𝑉𝑃𝑇) → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4645rneqd 5880 . . . . 5 ((𝐷𝑉𝑃𝑇) → ran (pmTrsp‘𝐷) = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4743, 46eqtrid 2776 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑇 = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4842, 47eleqtrd 2830 . . 3 ((𝐷𝑉𝑃𝑇) → 𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
49 eqid 2729 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5049elrnmpt 5900 . . . 4 (𝑃𝑇 → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5150adantl 481 . . 3 ((𝐷𝑉𝑃𝑇) → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5248, 51mpbid 232 . 2 ((𝐷𝑉𝑃𝑇) → ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5341, 52r19.29a 3137 1 ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  {crab 3394  cdif 3900  wss 3903  ifcif 4476  𝒫 cpw 4551  {csn 4577  {cpr 4579   cuni 4858   class class class wbr 5092  cmpt 5173  ran crn 5620  cfv 6482  2oc2o 8382  cen 8869  ⟨“cs2 14748  pmTrspcpmtr 19320  toCycctocyc 33048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-csh 14695  df-s2 14755  df-pmtr 19321  df-tocyc 33049
This theorem is referenced by:  cyc3genpm  33094
  Copyright terms: Public domain W3C validator