Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsp2cyc Structured version   Visualization version   GIF version

Theorem trsp2cyc 31387
Description: Exhibit the word a transposition corresponds to, as a cycle. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
trsp2cyc.t 𝑇 = ran (pmTrsp‘𝐷)
trsp2cyc.c 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
trsp2cyc ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑃,𝑖,𝑗   𝑇,𝑖,𝑗   𝑖,𝑉,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem trsp2cyc
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 766 . . . . . . 7 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
2 breq1 5079 . . . . . . . 8 (𝑦 = 𝑝 → (𝑦 ≈ 2o𝑝 ≈ 2o))
32elrab 3625 . . . . . . 7 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↔ (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
41, 3sylib 217 . . . . . 6 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
54simprd 496 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ≈ 2o)
6 en2 9051 . . . . 5 (𝑝 ≈ 2o → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
75, 6syl 17 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
84simpld 495 . . . . . . . . . 10 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ 𝒫 𝐷)
98elpwid 4546 . . . . . . . . 9 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝𝐷)
109adantr 481 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝𝐷)
11 vex 3435 . . . . . . . . . 10 𝑖 ∈ V
1211prid1 4700 . . . . . . . . 9 𝑖 ∈ {𝑖, 𝑗}
13 simpr 485 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 = {𝑖, 𝑗})
1412, 13eleqtrrid 2846 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑝)
1510, 14sseldd 3923 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝐷)
16 vex 3435 . . . . . . . . . 10 𝑗 ∈ V
1716prid2 4701 . . . . . . . . 9 𝑗 ∈ {𝑖, 𝑗}
1817, 13eleqtrrid 2846 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝑝)
1910, 18sseldd 3923 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝐷)
205adantr 481 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 ≈ 2o)
2113, 20eqbrtrrd 5100 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → {𝑖, 𝑗} ≈ 2o)
22 pr2ne 9759 . . . . . . . . . 10 ((𝑖𝐷𝑗𝐷) → ({𝑖, 𝑗} ≈ 2o𝑖𝑗))
2322biimpa 477 . . . . . . . . 9 (((𝑖𝐷𝑗𝐷) ∧ {𝑖, 𝑗} ≈ 2o) → 𝑖𝑗)
2415, 19, 21, 23syl21anc 835 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑗)
25 simplr 766 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
26 simp-4l 780 . . . . . . . . . . 11 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝐷𝑉)
27 eqid 2738 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
2827pmtrval 19057 . . . . . . . . . . 11 ((𝐷𝑉𝑝𝐷𝑝 ≈ 2o) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
2926, 10, 20, 28syl3anc 1370 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
3013fveq2d 6780 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3125, 29, 303eqtr2d 2784 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
32 trsp2cyc.c . . . . . . . . . 10 𝐶 = (toCyc‘𝐷)
3332, 26, 15, 19, 24, 27cycpm2tr 31383 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝐶‘⟨“𝑖𝑗”⟩) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3431, 33eqtr4d 2781 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))
3524, 34jca 512 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
3615, 19, 35jca31 515 . . . . . 6 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
3736ex 413 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 = {𝑖, 𝑗} → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
38372eximdv 1922 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (∃𝑖𝑗 𝑝 = {𝑖, 𝑗} → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
397, 38mpd 15 . . 3 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
40 r2ex 3231 . . 3 (∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)) ↔ ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
4139, 40sylibr 233 . 2 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
42 simpr 485 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑃𝑇)
43 trsp2cyc.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
4427pmtrfval 19056 . . . . . . 7 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4544adantr 481 . . . . . 6 ((𝐷𝑉𝑃𝑇) → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4645rneqd 5849 . . . . 5 ((𝐷𝑉𝑃𝑇) → ran (pmTrsp‘𝐷) = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4743, 46eqtrid 2790 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑇 = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4842, 47eleqtrd 2841 . . 3 ((𝐷𝑉𝑃𝑇) → 𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
49 eqid 2738 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5049elrnmpt 5867 . . . 4 (𝑃𝑇 → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5150adantl 482 . . 3 ((𝐷𝑉𝑃𝑇) → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5248, 51mpbid 231 . 2 ((𝐷𝑉𝑃𝑇) → ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5341, 52r19.29a 3217 1 ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  {crab 3068  cdif 3885  wss 3888  ifcif 4461  𝒫 cpw 4535  {csn 4563  {cpr 4565   cuni 4841   class class class wbr 5076  cmpt 5159  ran crn 5592  cfv 6435  2oc2o 8289  cen 8728  ⟨“cs2 14552  pmTrspcpmtr 19047  toCycctocyc 31370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-2o 8296  df-er 8496  df-map 8615  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-sup 9199  df-inf 9200  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-n0 12232  df-xnn0 12304  df-z 12318  df-uz 12581  df-rp 12729  df-fz 13238  df-fzo 13381  df-fl 13510  df-mod 13588  df-hash 14043  df-word 14216  df-concat 14272  df-s1 14299  df-substr 14352  df-pfx 14382  df-csh 14500  df-s2 14559  df-pmtr 19048  df-tocyc 31371
This theorem is referenced by:  cyc3genpm  31416
  Copyright terms: Public domain W3C validator