![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlkdlem8 | Structured version Visualization version GIF version |
Description: Lemma 8 for 2wlkd 27333. (Contributed by AV, 14-Feb-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
Ref | Expression |
---|---|
2wlkdlem8 | ⊢ (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . . 4 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . . 4 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 1, 2, 3, 4, 5 | 2wlkdlem7 27329 | . . 3 ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
7 | s2fv0 14044 | . . . 4 ⊢ (𝐽 ∈ V → (〈“𝐽𝐾”〉‘0) = 𝐽) | |
8 | s2fv1 14045 | . . . 4 ⊢ (𝐾 ∈ V → (〈“𝐽𝐾”〉‘1) = 𝐾) | |
9 | 7, 8 | anim12i 606 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐾 ∈ V) → ((〈“𝐽𝐾”〉‘0) = 𝐽 ∧ (〈“𝐽𝐾”〉‘1) = 𝐾)) |
10 | 6, 9 | syl 17 | . 2 ⊢ (𝜑 → ((〈“𝐽𝐾”〉‘0) = 𝐽 ∧ (〈“𝐽𝐾”〉‘1) = 𝐾)) |
11 | 2 | fveq1i 6449 | . . . 4 ⊢ (𝐹‘0) = (〈“𝐽𝐾”〉‘0) |
12 | 11 | eqeq1i 2783 | . . 3 ⊢ ((𝐹‘0) = 𝐽 ↔ (〈“𝐽𝐾”〉‘0) = 𝐽) |
13 | 2 | fveq1i 6449 | . . . 4 ⊢ (𝐹‘1) = (〈“𝐽𝐾”〉‘1) |
14 | 13 | eqeq1i 2783 | . . 3 ⊢ ((𝐹‘1) = 𝐾 ↔ (〈“𝐽𝐾”〉‘1) = 𝐾) |
15 | 12, 14 | anbi12i 620 | . 2 ⊢ (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾) ↔ ((〈“𝐽𝐾”〉‘0) = 𝐽 ∧ (〈“𝐽𝐾”〉‘1) = 𝐾)) |
16 | 10, 15 | sylibr 226 | 1 ⊢ (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ⊆ wss 3792 {cpr 4400 ‘cfv 6137 0cc0 10274 1c1 10275 〈“cs2 13998 〈“cs3 13999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 df-fzo 12790 df-hash 13442 df-word 13606 df-concat 13667 df-s1 13692 df-s2 14005 |
This theorem is referenced by: 2wlkdlem9 27331 |
Copyright terms: Public domain | W3C validator |