Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2trld | Structured version Visualization version GIF version |
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
2trld.n | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
Ref | Expression |
---|---|
2trld | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkd 28589 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
9 | 1, 2, 3, 4, 5 | 2wlkdlem7 28585 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
10 | 2trld.n | . . . . 5 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
11 | df-3an 1088 | . . . . 5 ⊢ ((𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐽 ≠ 𝐾) ↔ ((𝐽 ∈ V ∧ 𝐾 ∈ V) ∧ 𝐽 ≠ 𝐾)) | |
12 | 9, 10, 11 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐽 ≠ 𝐾)) |
13 | funcnvs2 14725 | . . . 4 ⊢ ((𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐽 ≠ 𝐾) → Fun ◡〈“𝐽𝐾”〉) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡〈“𝐽𝐾”〉) |
15 | 2 | cnveqi 5816 | . . . 4 ⊢ ◡𝐹 = ◡〈“𝐽𝐾”〉 |
16 | 15 | funeqi 6505 | . . 3 ⊢ (Fun ◡𝐹 ↔ Fun ◡〈“𝐽𝐾”〉) |
17 | 14, 16 | sylibr 233 | . 2 ⊢ (𝜑 → Fun ◡𝐹) |
18 | istrl 28352 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
19 | 8, 17, 18 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ⊆ wss 3898 {cpr 4575 class class class wbr 5092 ◡ccnv 5619 Fun wfun 6473 ‘cfv 6479 〈“cs2 14653 〈“cs3 14654 Vtxcvtx 27655 iEdgciedg 27656 Walkscwlks 28252 Trailsctrls 28346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-concat 14374 df-s1 14400 df-s2 14660 df-s3 14661 df-wlks 28255 df-trls 28348 |
This theorem is referenced by: 2trlond 28592 2pthd 28593 2spthd 28594 |
Copyright terms: Public domain | W3C validator |