![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2trld | Structured version Visualization version GIF version |
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
2wlkd.p | β’ π = β¨βπ΄π΅πΆββ© |
2wlkd.f | β’ πΉ = β¨βπ½πΎββ© |
2wlkd.s | β’ (π β (π΄ β π β§ π΅ β π β§ πΆ β π)) |
2wlkd.n | β’ (π β (π΄ β π΅ β§ π΅ β πΆ)) |
2wlkd.e | β’ (π β ({π΄, π΅} β (πΌβπ½) β§ {π΅, πΆ} β (πΌβπΎ))) |
2wlkd.v | β’ π = (VtxβπΊ) |
2wlkd.i | β’ πΌ = (iEdgβπΊ) |
2trld.n | β’ (π β π½ β πΎ) |
Ref | Expression |
---|---|
2trld | β’ (π β πΉ(TrailsβπΊ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 β’ π = β¨βπ΄π΅πΆββ© | |
2 | 2wlkd.f | . . 3 β’ πΉ = β¨βπ½πΎββ© | |
3 | 2wlkd.s | . . 3 β’ (π β (π΄ β π β§ π΅ β π β§ πΆ β π)) | |
4 | 2wlkd.n | . . 3 β’ (π β (π΄ β π΅ β§ π΅ β πΆ)) | |
5 | 2wlkd.e | . . 3 β’ (π β ({π΄, π΅} β (πΌβπ½) β§ {π΅, πΆ} β (πΌβπΎ))) | |
6 | 2wlkd.v | . . 3 β’ π = (VtxβπΊ) | |
7 | 2wlkd.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkd 29457 | . 2 β’ (π β πΉ(WalksβπΊ)π) |
9 | 1, 2, 3, 4, 5 | 2wlkdlem7 29453 | . . . . 5 β’ (π β (π½ β V β§ πΎ β V)) |
10 | 2trld.n | . . . . 5 β’ (π β π½ β πΎ) | |
11 | df-3an 1087 | . . . . 5 β’ ((π½ β V β§ πΎ β V β§ π½ β πΎ) β ((π½ β V β§ πΎ β V) β§ π½ β πΎ)) | |
12 | 9, 10, 11 | sylanbrc 581 | . . . 4 β’ (π β (π½ β V β§ πΎ β V β§ π½ β πΎ)) |
13 | funcnvs2 14868 | . . . 4 β’ ((π½ β V β§ πΎ β V β§ π½ β πΎ) β Fun β‘β¨βπ½πΎββ©) | |
14 | 12, 13 | syl 17 | . . 3 β’ (π β Fun β‘β¨βπ½πΎββ©) |
15 | 2 | cnveqi 5873 | . . . 4 β’ β‘πΉ = β‘β¨βπ½πΎββ© |
16 | 15 | funeqi 6568 | . . 3 β’ (Fun β‘πΉ β Fun β‘β¨βπ½πΎββ©) |
17 | 14, 16 | sylibr 233 | . 2 β’ (π β Fun β‘πΉ) |
18 | istrl 29220 | . 2 β’ (πΉ(TrailsβπΊ)π β (πΉ(WalksβπΊ)π β§ Fun β‘πΉ)) | |
19 | 8, 17, 18 | sylanbrc 581 | 1 β’ (π β πΉ(TrailsβπΊ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 Vcvv 3472 β wss 3947 {cpr 4629 class class class wbr 5147 β‘ccnv 5674 Fun wfun 6536 βcfv 6542 β¨βcs2 14796 β¨βcs3 14797 Vtxcvtx 28523 iEdgciedg 28524 Walkscwlks 29120 Trailsctrls 29214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-wlks 29123 df-trls 29216 |
This theorem is referenced by: 2trlond 29460 2pthd 29461 2spthd 29462 |
Copyright terms: Public domain | W3C validator |