| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6895 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
| 2 | 1 | elexd 3471 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 dom cdm 5638 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: elfvexd 6897 fviss 6938 fiin 9373 elharval 9514 elfzp12 13564 ismre 17551 ismri 17592 isacs 17612 oppccofval 17677 mulgnngsum 19011 gexid 19511 efgrcl 19645 islss 20840 thlle 21606 islbs4 21741 istopon 22799 fgval 23757 fgcl 23765 ufilen 23817 ustssxp 24092 ustbasel 24094 ustincl 24095 ustdiag 24096 ustinvel 24097 ustexhalf 24098 ustfilxp 24100 ustbas2 24113 trust 24117 utopval 24120 elutop 24121 restutop 24125 ustuqtop5 24133 isucn 24165 psmetdmdm 24193 psmetf 24194 psmet0 24196 psmettri2 24197 psmetres2 24202 ismet2 24221 xmetpsmet 24236 metustfbas 24445 metust 24446 iscmet 25184 ulmscl 26288 1vgrex 28929 wlkcompim 29560 clwlkcompim 29710 wwlkbp 29771 2wlkdlem7 29862 clwwlkbp 29914 3wlkdlem7 30095 metidval 33880 pstmval 33885 pstmxmet 33887 issiga 34102 insiga 34127 mvrsval 35492 mrsubcv 35497 mrsubccat 35505 mppsval 35559 topdifinffinlem 37335 istotbnd 37763 isbnd 37774 ismrc 42689 isnacs 42692 mzpcl1 42717 mzpcl2 42718 mzpf 42724 mzpadd 42726 mzpmul 42727 mzpsubmpt 42731 mzpnegmpt 42732 mzpexpmpt 42733 mzpindd 42734 mzpsubst 42736 mzpcompact2 42740 mzpcong 42961 sprel 47485 grtriprop 47940 clintop 48196 assintop 48197 clintopcllaw 48199 assintopcllaw 48200 assintopass 48202 oppcinito 49224 oppctermo 49225 oppczeroo 49226 |
| Copyright terms: Public domain | W3C validator |