Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6788 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
2 | 1 | elexd 3442 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 dom cdm 5580 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 |
This theorem is referenced by: elfvexd 6790 fviss 6827 fiin 9111 elharval 9250 elfzp12 13264 ismre 17216 ismri 17257 isacs 17277 oppccofval 17343 mulgnngsum 18624 gexid 19101 efgrcl 19236 islss 20111 thlle 20814 islbs4 20949 istopon 21969 fgval 22929 fgcl 22937 ufilen 22989 ustssxp 23264 ustbasel 23266 ustincl 23267 ustdiag 23268 ustinvel 23269 ustexhalf 23270 ustfilxp 23272 ustbas2 23285 trust 23289 utopval 23292 elutop 23293 restutop 23297 ustuqtop5 23305 isucn 23338 psmetdmdm 23366 psmetf 23367 psmet0 23369 psmettri2 23370 psmetres2 23375 ismet2 23394 xmetpsmet 23409 metustfbas 23619 metust 23620 iscmet 24353 ulmscl 25443 1vgrex 27275 wlkcompim 27901 clwlkcompim 28049 wwlkbp 28107 2wlkdlem7 28198 clwwlkbp 28250 3wlkdlem7 28431 metidval 31742 pstmval 31747 pstmxmet 31749 issiga 31980 insiga 32005 mvrsval 33367 mrsubcv 33372 mrsubccat 33380 mppsval 33434 topdifinffinlem 35445 istotbnd 35854 isbnd 35865 ismrc 40439 isnacs 40442 mzpcl1 40467 mzpcl2 40468 mzpf 40474 mzpadd 40476 mzpmul 40477 mzpsubmpt 40481 mzpnegmpt 40482 mzpexpmpt 40483 mzpindd 40484 mzpsubst 40486 mzpcompact2 40490 mzpcong 40710 sprel 44824 clintop 45290 assintop 45291 clintopcllaw 45293 assintopcllaw 45294 assintopass 45296 |
Copyright terms: Public domain | W3C validator |