| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6851 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
| 2 | 1 | elexd 3458 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3434 dom cdm 5614 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-dm 5624 df-iota 6433 df-fv 6485 |
| This theorem is referenced by: elfvexd 6853 fviss 6894 fiin 9301 elharval 9442 elfzp12 13495 ismre 17484 ismri 17529 isacs 17549 oppccofval 17614 mulgnngsum 18984 gexid 19486 efgrcl 19620 islss 20860 thlle 21627 islbs4 21762 istopon 22820 fgval 23778 fgcl 23786 ufilen 23838 ustssxp 24113 ustbasel 24115 ustincl 24116 ustdiag 24117 ustinvel 24118 ustexhalf 24119 ustfilxp 24121 ustbas2 24133 trust 24137 utopval 24140 elutop 24141 restutop 24145 ustuqtop5 24153 isucn 24185 psmetdmdm 24213 psmetf 24214 psmet0 24216 psmettri2 24217 psmetres2 24222 ismet2 24241 xmetpsmet 24256 metustfbas 24465 metust 24466 iscmet 25204 ulmscl 26308 1vgrex 28973 wlkcompim 29603 clwlkcompim 29751 wwlkbp 29812 2wlkdlem7 29903 clwwlkbp 29955 3wlkdlem7 30136 metidval 33893 pstmval 33898 pstmxmet 33900 issiga 34115 insiga 34140 mvrsval 35517 mrsubcv 35522 mrsubccat 35530 mppsval 35584 topdifinffinlem 37360 istotbnd 37788 isbnd 37799 ismrc 42713 isnacs 42716 mzpcl1 42741 mzpcl2 42742 mzpf 42748 mzpadd 42750 mzpmul 42751 mzpsubmpt 42755 mzpnegmpt 42756 mzpexpmpt 42757 mzpindd 42758 mzpsubst 42760 mzpcompact2 42764 mzpcong 42984 sprel 47494 grtriprop 47951 clintop 48218 assintop 48219 clintopcllaw 48221 assintopcllaw 48222 assintopass 48224 oppcinito 49246 oppctermo 49247 oppczeroo 49248 |
| Copyright terms: Public domain | W3C validator |