| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6861 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
| 2 | 1 | elexd 3462 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 dom cdm 5623 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: elfvexd 6863 fviss 6904 fiin 9331 elharval 9472 elfzp12 13524 ismre 17510 ismri 17555 isacs 17575 oppccofval 17640 mulgnngsum 18976 gexid 19478 efgrcl 19612 islss 20855 thlle 21622 islbs4 21757 istopon 22815 fgval 23773 fgcl 23781 ufilen 23833 ustssxp 24108 ustbasel 24110 ustincl 24111 ustdiag 24112 ustinvel 24113 ustexhalf 24114 ustfilxp 24116 ustbas2 24129 trust 24133 utopval 24136 elutop 24137 restutop 24141 ustuqtop5 24149 isucn 24181 psmetdmdm 24209 psmetf 24210 psmet0 24212 psmettri2 24213 psmetres2 24218 ismet2 24237 xmetpsmet 24252 metustfbas 24461 metust 24462 iscmet 25200 ulmscl 26304 1vgrex 28965 wlkcompim 29595 clwlkcompim 29743 wwlkbp 29804 2wlkdlem7 29895 clwwlkbp 29947 3wlkdlem7 30128 metidval 33856 pstmval 33861 pstmxmet 33863 issiga 34078 insiga 34103 mvrsval 35477 mrsubcv 35482 mrsubccat 35490 mppsval 35544 topdifinffinlem 37320 istotbnd 37748 isbnd 37759 ismrc 42674 isnacs 42677 mzpcl1 42702 mzpcl2 42703 mzpf 42709 mzpadd 42711 mzpmul 42712 mzpsubmpt 42716 mzpnegmpt 42717 mzpexpmpt 42718 mzpindd 42719 mzpsubst 42721 mzpcompact2 42725 mzpcong 42945 sprel 47469 grtriprop 47924 clintop 48180 assintop 48181 clintopcllaw 48183 assintopcllaw 48184 assintopass 48186 oppcinito 49208 oppctermo 49209 oppczeroo 49210 |
| Copyright terms: Public domain | W3C validator |