![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6944 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
2 | 1 | elexd 3502 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 dom cdm 5689 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 |
This theorem is referenced by: elfvexd 6946 fviss 6986 fiin 9460 elharval 9599 elfzp12 13640 ismre 17635 ismri 17676 isacs 17696 oppccofval 17762 mulgnngsum 19110 gexid 19614 efgrcl 19748 islss 20950 thlle 21734 thlleOLD 21735 islbs4 21870 istopon 22934 fgval 23894 fgcl 23902 ufilen 23954 ustssxp 24229 ustbasel 24231 ustincl 24232 ustdiag 24233 ustinvel 24234 ustexhalf 24235 ustfilxp 24237 ustbas2 24250 trust 24254 utopval 24257 elutop 24258 restutop 24262 ustuqtop5 24270 isucn 24303 psmetdmdm 24331 psmetf 24332 psmet0 24334 psmettri2 24335 psmetres2 24340 ismet2 24359 xmetpsmet 24374 metustfbas 24586 metust 24587 iscmet 25332 ulmscl 26437 1vgrex 29034 wlkcompim 29665 clwlkcompim 29813 wwlkbp 29871 2wlkdlem7 29962 clwwlkbp 30014 3wlkdlem7 30195 metidval 33851 pstmval 33856 pstmxmet 33858 issiga 34093 insiga 34118 mvrsval 35490 mrsubcv 35495 mrsubccat 35503 mppsval 35557 topdifinffinlem 37330 istotbnd 37756 isbnd 37767 ismrc 42689 isnacs 42692 mzpcl1 42717 mzpcl2 42718 mzpf 42724 mzpadd 42726 mzpmul 42727 mzpsubmpt 42731 mzpnegmpt 42732 mzpexpmpt 42733 mzpindd 42734 mzpsubst 42736 mzpcompact2 42740 mzpcong 42961 sprel 47409 grtriprop 47846 clintop 48052 assintop 48053 clintopcllaw 48055 assintopcllaw 48056 assintopass 48058 |
Copyright terms: Public domain | W3C validator |