Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6862 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
2 | 1 | elexd 3461 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 dom cdm 5620 ‘cfv 6479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-dm 5630 df-iota 6431 df-fv 6487 |
This theorem is referenced by: elfvexd 6864 fviss 6901 fiin 9279 elharval 9418 elfzp12 13436 ismre 17396 ismri 17437 isacs 17457 oppccofval 17523 mulgnngsum 18805 gexid 19282 efgrcl 19416 islss 20302 thlle 21009 thlleOLD 21010 islbs4 21145 istopon 22167 fgval 23127 fgcl 23135 ufilen 23187 ustssxp 23462 ustbasel 23464 ustincl 23465 ustdiag 23466 ustinvel 23467 ustexhalf 23468 ustfilxp 23470 ustbas2 23483 trust 23487 utopval 23490 elutop 23491 restutop 23495 ustuqtop5 23503 isucn 23536 psmetdmdm 23564 psmetf 23565 psmet0 23567 psmettri2 23568 psmetres2 23573 ismet2 23592 xmetpsmet 23607 metustfbas 23819 metust 23820 iscmet 24554 ulmscl 25644 1vgrex 27661 wlkcompim 28288 clwlkcompim 28436 wwlkbp 28494 2wlkdlem7 28585 clwwlkbp 28637 3wlkdlem7 28818 metidval 32138 pstmval 32143 pstmxmet 32145 issiga 32378 insiga 32403 mvrsval 33766 mrsubcv 33771 mrsubccat 33779 mppsval 33833 topdifinffinlem 35631 istotbnd 36040 isbnd 36051 ismrc 40793 isnacs 40796 mzpcl1 40821 mzpcl2 40822 mzpf 40828 mzpadd 40830 mzpmul 40831 mzpsubmpt 40835 mzpnegmpt 40836 mzpexpmpt 40837 mzpindd 40838 mzpsubst 40840 mzpcompact2 40844 mzpcong 41065 sprel 45295 clintop 45761 assintop 45762 clintopcllaw 45764 assintopcllaw 45765 assintopass 45767 |
Copyright terms: Public domain | W3C validator |