| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6898 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
| 2 | 1 | elexd 3474 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 dom cdm 5641 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: elfvexd 6900 fviss 6941 fiin 9380 elharval 9521 elfzp12 13571 ismre 17558 ismri 17599 isacs 17619 oppccofval 17684 mulgnngsum 19018 gexid 19518 efgrcl 19652 islss 20847 thlle 21613 islbs4 21748 istopon 22806 fgval 23764 fgcl 23772 ufilen 23824 ustssxp 24099 ustbasel 24101 ustincl 24102 ustdiag 24103 ustinvel 24104 ustexhalf 24105 ustfilxp 24107 ustbas2 24120 trust 24124 utopval 24127 elutop 24128 restutop 24132 ustuqtop5 24140 isucn 24172 psmetdmdm 24200 psmetf 24201 psmet0 24203 psmettri2 24204 psmetres2 24209 ismet2 24228 xmetpsmet 24243 metustfbas 24452 metust 24453 iscmet 25191 ulmscl 26295 1vgrex 28936 wlkcompim 29567 clwlkcompim 29717 wwlkbp 29778 2wlkdlem7 29869 clwwlkbp 29921 3wlkdlem7 30102 metidval 33887 pstmval 33892 pstmxmet 33894 issiga 34109 insiga 34134 mvrsval 35499 mrsubcv 35504 mrsubccat 35512 mppsval 35566 topdifinffinlem 37342 istotbnd 37770 isbnd 37781 ismrc 42696 isnacs 42699 mzpcl1 42724 mzpcl2 42725 mzpf 42731 mzpadd 42733 mzpmul 42734 mzpsubmpt 42738 mzpnegmpt 42739 mzpexpmpt 42740 mzpindd 42741 mzpsubst 42743 mzpcompact2 42747 mzpcong 42968 sprel 47489 grtriprop 47944 clintop 48200 assintop 48201 clintopcllaw 48203 assintopcllaw 48204 assintopass 48206 oppcinito 49228 oppctermo 49229 oppczeroo 49230 |
| Copyright terms: Public domain | W3C validator |