| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6865 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
| 2 | 1 | elexd 3462 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3438 dom cdm 5621 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-dm 5631 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: elfvexd 6867 fviss 6908 fiin 9316 elharval 9457 elfzp12 13513 ismre 17502 ismri 17547 isacs 17567 oppccofval 17632 mulgnngsum 19002 gexid 19503 efgrcl 19637 islss 20877 thlle 21644 islbs4 21779 istopon 22837 fgval 23795 fgcl 23803 ufilen 23855 ustssxp 24130 ustbasel 24132 ustincl 24133 ustdiag 24134 ustinvel 24135 ustexhalf 24136 ustfilxp 24138 ustbas2 24150 trust 24154 utopval 24157 elutop 24158 restutop 24162 ustuqtop5 24170 isucn 24202 psmetdmdm 24230 psmetf 24231 psmet0 24233 psmettri2 24234 psmetres2 24239 ismet2 24258 xmetpsmet 24273 metustfbas 24482 metust 24483 iscmet 25221 ulmscl 26325 1vgrex 28991 wlkcompim 29621 clwlkcompim 29769 wwlkbp 29830 2wlkdlem7 29921 clwwlkbp 29976 3wlkdlem7 30157 metidval 33914 pstmval 33919 pstmxmet 33921 issiga 34136 insiga 34161 mvrsval 35560 mrsubcv 35565 mrsubccat 35573 mppsval 35627 topdifinffinlem 37402 istotbnd 37819 isbnd 37830 ismrc 42808 isnacs 42811 mzpcl1 42836 mzpcl2 42837 mzpf 42843 mzpadd 42845 mzpmul 42846 mzpsubmpt 42850 mzpnegmpt 42851 mzpexpmpt 42852 mzpindd 42853 mzpsubst 42855 mzpcompact2 42859 mzpcong 43079 sprel 47598 grtriprop 48055 clintop 48322 assintop 48323 clintopcllaw 48325 assintopcllaw 48326 assintopass 48328 oppcinito 49350 oppctermo 49351 oppczeroo 49352 |
| Copyright terms: Public domain | W3C validator |