Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6806 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
2 | 1 | elexd 3452 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 dom cdm 5589 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 |
This theorem is referenced by: elfvexd 6808 fviss 6845 fiin 9181 elharval 9320 elfzp12 13335 ismre 17299 ismri 17340 isacs 17360 oppccofval 17426 mulgnngsum 18709 gexid 19186 efgrcl 19321 islss 20196 thlle 20903 thlleOLD 20904 islbs4 21039 istopon 22061 fgval 23021 fgcl 23029 ufilen 23081 ustssxp 23356 ustbasel 23358 ustincl 23359 ustdiag 23360 ustinvel 23361 ustexhalf 23362 ustfilxp 23364 ustbas2 23377 trust 23381 utopval 23384 elutop 23385 restutop 23389 ustuqtop5 23397 isucn 23430 psmetdmdm 23458 psmetf 23459 psmet0 23461 psmettri2 23462 psmetres2 23467 ismet2 23486 xmetpsmet 23501 metustfbas 23713 metust 23714 iscmet 24448 ulmscl 25538 1vgrex 27372 wlkcompim 27999 clwlkcompim 28148 wwlkbp 28206 2wlkdlem7 28297 clwwlkbp 28349 3wlkdlem7 28530 metidval 31840 pstmval 31845 pstmxmet 31847 issiga 32080 insiga 32105 mvrsval 33467 mrsubcv 33472 mrsubccat 33480 mppsval 33534 topdifinffinlem 35518 istotbnd 35927 isbnd 35938 ismrc 40523 isnacs 40526 mzpcl1 40551 mzpcl2 40552 mzpf 40558 mzpadd 40560 mzpmul 40561 mzpsubmpt 40565 mzpnegmpt 40566 mzpexpmpt 40567 mzpindd 40568 mzpsubst 40570 mzpcompact2 40574 mzpcong 40794 sprel 44936 clintop 45402 assintop 45403 clintopcllaw 45405 assintopcllaw 45406 assintopass 45408 |
Copyright terms: Public domain | W3C validator |