![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6929 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
2 | 1 | elexd 3495 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 dom cdm 5677 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-dm 5687 df-iota 6496 df-fv 6552 |
This theorem is referenced by: elfvexd 6931 fviss 6969 fiin 9417 elharval 9556 elfzp12 13580 ismre 17534 ismri 17575 isacs 17595 oppccofval 17661 mulgnngsum 18959 gexid 19449 efgrcl 19583 islss 20545 thlle 21251 thlleOLD 21252 islbs4 21387 istopon 22414 fgval 23374 fgcl 23382 ufilen 23434 ustssxp 23709 ustbasel 23711 ustincl 23712 ustdiag 23713 ustinvel 23714 ustexhalf 23715 ustfilxp 23717 ustbas2 23730 trust 23734 utopval 23737 elutop 23738 restutop 23742 ustuqtop5 23750 isucn 23783 psmetdmdm 23811 psmetf 23812 psmet0 23814 psmettri2 23815 psmetres2 23820 ismet2 23839 xmetpsmet 23854 metustfbas 24066 metust 24067 iscmet 24801 ulmscl 25891 1vgrex 28293 wlkcompim 28920 clwlkcompim 29068 wwlkbp 29126 2wlkdlem7 29217 clwwlkbp 29269 3wlkdlem7 29450 metidval 32901 pstmval 32906 pstmxmet 32908 issiga 33141 insiga 33166 mvrsval 34527 mrsubcv 34532 mrsubccat 34540 mppsval 34594 topdifinffinlem 36276 istotbnd 36685 isbnd 36696 ismrc 41487 isnacs 41490 mzpcl1 41515 mzpcl2 41516 mzpf 41522 mzpadd 41524 mzpmul 41525 mzpsubmpt 41529 mzpnegmpt 41530 mzpexpmpt 41531 mzpindd 41532 mzpsubst 41534 mzpcompact2 41538 mzpcong 41759 sprel 46200 clintop 46666 assintop 46667 clintopcllaw 46669 assintopcllaw 46670 assintopass 46672 |
Copyright terms: Public domain | W3C validator |