![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6957 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
2 | 1 | elexd 3512 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 dom cdm 5700 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: elfvexd 6959 fviss 6999 fiin 9491 elharval 9630 elfzp12 13663 ismre 17648 ismri 17689 isacs 17709 oppccofval 17775 mulgnngsum 19119 gexid 19623 efgrcl 19757 islss 20955 thlle 21739 thlleOLD 21740 islbs4 21875 istopon 22939 fgval 23899 fgcl 23907 ufilen 23959 ustssxp 24234 ustbasel 24236 ustincl 24237 ustdiag 24238 ustinvel 24239 ustexhalf 24240 ustfilxp 24242 ustbas2 24255 trust 24259 utopval 24262 elutop 24263 restutop 24267 ustuqtop5 24275 isucn 24308 psmetdmdm 24336 psmetf 24337 psmet0 24339 psmettri2 24340 psmetres2 24345 ismet2 24364 xmetpsmet 24379 metustfbas 24591 metust 24592 iscmet 25337 ulmscl 26440 1vgrex 29037 wlkcompim 29668 clwlkcompim 29816 wwlkbp 29874 2wlkdlem7 29965 clwwlkbp 30017 3wlkdlem7 30198 metidval 33836 pstmval 33841 pstmxmet 33843 issiga 34076 insiga 34101 mvrsval 35473 mrsubcv 35478 mrsubccat 35486 mppsval 35540 topdifinffinlem 37313 istotbnd 37729 isbnd 37740 ismrc 42657 isnacs 42660 mzpcl1 42685 mzpcl2 42686 mzpf 42692 mzpadd 42694 mzpmul 42695 mzpsubmpt 42699 mzpnegmpt 42700 mzpexpmpt 42701 mzpindd 42702 mzpsubst 42704 mzpcompact2 42708 mzpcong 42929 sprel 47358 grtriprop 47792 clintop 47931 assintop 47932 clintopcllaw 47934 assintopcllaw 47935 assintopass 47937 |
Copyright terms: Public domain | W3C validator |