| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6913 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
| 2 | 1 | elexd 3483 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 dom cdm 5654 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: elfvexd 6915 fviss 6956 fiin 9434 elharval 9575 elfzp12 13620 ismre 17602 ismri 17643 isacs 17663 oppccofval 17728 mulgnngsum 19062 gexid 19562 efgrcl 19696 islss 20891 thlle 21657 islbs4 21792 istopon 22850 fgval 23808 fgcl 23816 ufilen 23868 ustssxp 24143 ustbasel 24145 ustincl 24146 ustdiag 24147 ustinvel 24148 ustexhalf 24149 ustfilxp 24151 ustbas2 24164 trust 24168 utopval 24171 elutop 24172 restutop 24176 ustuqtop5 24184 isucn 24216 psmetdmdm 24244 psmetf 24245 psmet0 24247 psmettri2 24248 psmetres2 24253 ismet2 24272 xmetpsmet 24287 metustfbas 24496 metust 24497 iscmet 25236 ulmscl 26340 1vgrex 28981 wlkcompim 29612 clwlkcompim 29762 wwlkbp 29823 2wlkdlem7 29914 clwwlkbp 29966 3wlkdlem7 30147 metidval 33921 pstmval 33926 pstmxmet 33928 issiga 34143 insiga 34168 mvrsval 35527 mrsubcv 35532 mrsubccat 35540 mppsval 35594 topdifinffinlem 37365 istotbnd 37793 isbnd 37804 ismrc 42724 isnacs 42727 mzpcl1 42752 mzpcl2 42753 mzpf 42759 mzpadd 42761 mzpmul 42762 mzpsubmpt 42766 mzpnegmpt 42767 mzpexpmpt 42768 mzpindd 42769 mzpsubst 42771 mzpcompact2 42775 mzpcong 42996 sprel 47498 grtriprop 47953 clintop 48183 assintop 48184 clintopcllaw 48186 assintopcllaw 48187 assintopass 48189 oppcinito 49152 oppctermo 49153 oppczeroo 49154 |
| Copyright terms: Public domain | W3C validator |