Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1118 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1167 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ccatswrd 14309 plttr 17975 pltletr 17976 latjlej1 18086 latjlej2 18087 latnlej 18089 latnlej2 18092 latmlem2 18103 latledi 18110 latjass 18116 latj32 18118 latj13 18119 ipopos 18169 tsrlemax 18219 imasmnd2 18337 grpsubsub 18579 grpnnncan2 18587 imasgrp2 18605 mulgnn0ass 18654 mulgsubdir 18658 cmn32 19320 ablsubadd 19328 imasring 19773 zntoslem 20676 xmettri3 23414 mettri3 23415 xmetrtri 23416 xmetrtri2 23417 metrtri 23418 cphdivcl 24251 cphassr 24281 relogbmulexp 25833 grpodivdiv 28803 grpomuldivass 28804 ablo32 28812 ablodivdiv4 28817 ablodiv32 28818 nvmdi 28911 dipdi 29106 dipassr 29109 dipsubdir 29111 dipsubdi 29112 dvrcan5 31392 cgr3tr4 34281 cgr3rflx 34283 endofsegid 34314 seglemin 34342 broutsideof2 34351 rngosubdi 36030 rngosubdir 36031 isdrngo2 36043 crngm23 36087 dmncan2 36162 latmassOLD 37170 latm32 37172 cvrnbtwn4 37220 cvrcmp2 37225 ltcvrntr 37365 atcvrj0 37369 3dim3 37410 paddasslem17 37777 paddass 37779 lautlt 38032 lautcvr 38033 lautj 38034 lautm 38035 erngdvlem3 38931 dvalveclem 38966 isdomn4 40100 mendlmod 40934 |
Copyright terms: Public domain | W3C validator |