| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1en 9172 ccatswrd 14684 plttr 18350 pltletr 18351 latjlej1 18461 latjlej2 18462 latnlej 18464 latnlej2 18467 latmlem2 18478 latledi 18485 latjass 18491 latj32 18493 latj13 18494 ipopos 18544 tsrlemax 18594 imasmnd2 18750 grpsubsub 19010 grpnnncan2 19018 imasgrp2 19036 mulgnn0ass 19091 mulgsubdir 19095 cmn32 19779 ablsubadd 19788 imasrng 20135 imasring 20288 isdomn4 20674 zntoslem 21515 xmettri3 24290 mettri3 24291 xmetrtri 24292 xmetrtri2 24293 metrtri 24294 cphdivcl 25132 cphassr 25162 relogbmulexp 26738 grpodivdiv 30467 grpomuldivass 30468 ablo32 30476 ablodivdiv4 30481 ablodiv32 30482 nvmdi 30575 dipdi 30770 dipassr 30773 dipsubdir 30775 dipsubdi 30776 dvrcan5 33177 cgr3tr4 36016 cgr3rflx 36018 endofsegid 36049 seglemin 36077 broutsideof2 36086 rngosubdi 37915 rngosubdir 37916 isdrngo2 37928 crngm23 37972 dmncan2 38047 latmassOLD 39193 latm32 39195 cvrnbtwn4 39243 cvrcmp2 39248 ltcvrntr 39389 atcvrj0 39393 3dim3 39434 paddasslem17 39801 paddass 39803 lautlt 40056 lautcvr 40057 lautj 40058 lautm 40059 erngdvlem3 40955 dvalveclem 40990 mendlmod 43160 |
| Copyright terms: Public domain | W3C validator |