| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1en 9130 ccatswrd 14640 plttr 18308 pltletr 18309 latjlej1 18419 latjlej2 18420 latnlej 18422 latnlej2 18425 latmlem2 18436 latledi 18443 latjass 18449 latj32 18451 latj13 18452 ipopos 18502 tsrlemax 18552 imasmnd2 18708 grpsubsub 18968 grpnnncan2 18976 imasgrp2 18994 mulgnn0ass 19049 mulgsubdir 19053 cmn32 19737 ablsubadd 19746 imasrng 20093 imasring 20246 isdomn4 20632 zntoslem 21473 xmettri3 24248 mettri3 24249 xmetrtri 24250 xmetrtri2 24251 metrtri 24252 cphdivcl 25089 cphassr 25119 relogbmulexp 26695 grpodivdiv 30476 grpomuldivass 30477 ablo32 30485 ablodivdiv4 30490 ablodiv32 30491 nvmdi 30584 dipdi 30779 dipassr 30782 dipsubdir 30784 dipsubdi 30785 dvrcan5 33194 cgr3tr4 36047 cgr3rflx 36049 endofsegid 36080 seglemin 36108 broutsideof2 36117 rngosubdi 37946 rngosubdir 37947 isdrngo2 37959 crngm23 38003 dmncan2 38078 latmassOLD 39229 latm32 39231 cvrnbtwn4 39279 cvrcmp2 39284 ltcvrntr 39425 atcvrj0 39429 3dim3 39470 paddasslem17 39837 paddass 39839 lautlt 40092 lautcvr 40093 lautj 40094 lautm 40095 erngdvlem3 40991 dvalveclem 41026 mendlmod 43185 |
| Copyright terms: Public domain | W3C validator |