![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1169 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: dif1en 9226 ccatswrd 14716 plttr 18412 pltletr 18413 latjlej1 18523 latjlej2 18524 latnlej 18526 latnlej2 18529 latmlem2 18540 latledi 18547 latjass 18553 latj32 18555 latj13 18556 ipopos 18606 tsrlemax 18656 imasmnd2 18809 grpsubsub 19069 grpnnncan2 19077 imasgrp2 19095 mulgnn0ass 19150 mulgsubdir 19154 cmn32 19842 ablsubadd 19851 imasrng 20204 imasring 20353 isdomn4 20738 zntoslem 21598 xmettri3 24384 mettri3 24385 xmetrtri 24386 xmetrtri2 24387 metrtri 24388 cphdivcl 25235 cphassr 25265 relogbmulexp 26839 grpodivdiv 30572 grpomuldivass 30573 ablo32 30581 ablodivdiv4 30586 ablodiv32 30587 nvmdi 30680 dipdi 30875 dipassr 30878 dipsubdir 30880 dipsubdi 30881 dvrcan5 33216 cgr3tr4 36016 cgr3rflx 36018 endofsegid 36049 seglemin 36077 broutsideof2 36086 rngosubdi 37905 rngosubdir 37906 isdrngo2 37918 crngm23 37962 dmncan2 38037 latmassOLD 39185 latm32 39187 cvrnbtwn4 39235 cvrcmp2 39240 ltcvrntr 39381 atcvrj0 39385 3dim3 39426 paddasslem17 39793 paddass 39795 lautlt 40048 lautcvr 40049 lautj 40050 lautm 40051 erngdvlem3 40947 dvalveclem 40982 mendlmod 43150 |
Copyright terms: Public domain | W3C validator |