| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1en 9124 ccatswrd 14633 plttr 18301 pltletr 18302 latjlej1 18412 latjlej2 18413 latnlej 18415 latnlej2 18418 latmlem2 18429 latledi 18436 latjass 18442 latj32 18444 latj13 18445 ipopos 18495 tsrlemax 18545 imasmnd2 18701 grpsubsub 18961 grpnnncan2 18969 imasgrp2 18987 mulgnn0ass 19042 mulgsubdir 19046 cmn32 19730 ablsubadd 19739 imasrng 20086 imasring 20239 isdomn4 20625 zntoslem 21466 xmettri3 24241 mettri3 24242 xmetrtri 24243 xmetrtri2 24244 metrtri 24245 cphdivcl 25082 cphassr 25112 relogbmulexp 26688 grpodivdiv 30469 grpomuldivass 30470 ablo32 30478 ablodivdiv4 30483 ablodiv32 30484 nvmdi 30577 dipdi 30772 dipassr 30775 dipsubdir 30777 dipsubdi 30778 dvrcan5 33187 cgr3tr4 36040 cgr3rflx 36042 endofsegid 36073 seglemin 36101 broutsideof2 36110 rngosubdi 37939 rngosubdir 37940 isdrngo2 37952 crngm23 37996 dmncan2 38071 latmassOLD 39222 latm32 39224 cvrnbtwn4 39272 cvrcmp2 39277 ltcvrntr 39418 atcvrj0 39422 3dim3 39463 paddasslem17 39830 paddass 39832 lautlt 40085 lautcvr 40086 lautj 40087 lautm 40088 erngdvlem3 40984 dvalveclem 41019 mendlmod 43178 |
| Copyright terms: Public domain | W3C validator |