Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1119 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1168 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ccatswrd 14390 plttr 18069 pltletr 18070 latjlej1 18180 latjlej2 18181 latnlej 18183 latnlej2 18186 latmlem2 18197 latledi 18204 latjass 18210 latj32 18212 latj13 18213 ipopos 18263 tsrlemax 18313 imasmnd2 18431 grpsubsub 18673 grpnnncan2 18681 imasgrp2 18699 mulgnn0ass 18748 mulgsubdir 18752 cmn32 19414 ablsubadd 19422 imasring 19867 zntoslem 20773 xmettri3 23515 mettri3 23516 xmetrtri 23517 xmetrtri2 23518 metrtri 23519 cphdivcl 24355 cphassr 24385 relogbmulexp 25937 grpodivdiv 28911 grpomuldivass 28912 ablo32 28920 ablodivdiv4 28925 ablodiv32 28926 nvmdi 29019 dipdi 29214 dipassr 29217 dipsubdir 29219 dipsubdi 29220 dvrcan5 31499 cgr3tr4 34363 cgr3rflx 34365 endofsegid 34396 seglemin 34424 broutsideof2 34433 rngosubdi 36112 rngosubdir 36113 isdrngo2 36125 crngm23 36169 dmncan2 36244 latmassOLD 37250 latm32 37252 cvrnbtwn4 37300 cvrcmp2 37305 ltcvrntr 37445 atcvrj0 37449 3dim3 37490 paddasslem17 37857 paddass 37859 lautlt 38112 lautcvr 38113 lautj 38114 lautm 38115 erngdvlem3 39011 dvalveclem 39046 isdomn4 40179 mendlmod 41025 |
Copyright terms: Public domain | W3C validator |