| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1en 9101 ccatswrd 14609 plttr 18277 pltletr 18278 latjlej1 18388 latjlej2 18389 latnlej 18391 latnlej2 18394 latmlem2 18405 latledi 18412 latjass 18418 latj32 18420 latj13 18421 ipopos 18471 tsrlemax 18521 imasmnd2 18677 grpsubsub 18937 grpnnncan2 18945 imasgrp2 18963 mulgnn0ass 19018 mulgsubdir 19022 cmn32 19706 ablsubadd 19715 imasrng 20062 imasring 20215 isdomn4 20601 zntoslem 21442 xmettri3 24217 mettri3 24218 xmetrtri 24219 xmetrtri2 24220 metrtri 24221 cphdivcl 25058 cphassr 25088 relogbmulexp 26664 grpodivdiv 30442 grpomuldivass 30443 ablo32 30451 ablodivdiv4 30456 ablodiv32 30457 nvmdi 30550 dipdi 30745 dipassr 30748 dipsubdir 30750 dipsubdi 30751 dvrcan5 33160 cgr3tr4 36013 cgr3rflx 36015 endofsegid 36046 seglemin 36074 broutsideof2 36083 rngosubdi 37912 rngosubdir 37913 isdrngo2 37925 crngm23 37969 dmncan2 38044 latmassOLD 39195 latm32 39197 cvrnbtwn4 39245 cvrcmp2 39250 ltcvrntr 39391 atcvrj0 39395 3dim3 39436 paddasslem17 39803 paddass 39805 lautlt 40058 lautcvr 40059 lautj 40060 lautm 40061 erngdvlem3 40957 dvalveclem 40992 mendlmod 43151 |
| Copyright terms: Public domain | W3C validator |