| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1en 9071 ccatswrd 14576 plttr 18246 pltletr 18247 latjlej1 18359 latjlej2 18360 latnlej 18362 latnlej2 18365 latmlem2 18376 latledi 18383 latjass 18389 latj32 18391 latj13 18392 ipopos 18442 tsrlemax 18492 imasmnd2 18682 grpsubsub 18942 grpnnncan2 18950 imasgrp2 18968 mulgnn0ass 19023 mulgsubdir 19027 cmn32 19712 ablsubadd 19721 imasrng 20095 imasring 20248 isdomn4 20631 zntoslem 21493 xmettri3 24268 mettri3 24269 xmetrtri 24270 xmetrtri2 24271 metrtri 24272 cphdivcl 25109 cphassr 25139 relogbmulexp 26715 grpodivdiv 30520 grpomuldivass 30521 ablo32 30529 ablodivdiv4 30534 ablodiv32 30535 nvmdi 30628 dipdi 30823 dipassr 30826 dipsubdir 30828 dipsubdi 30829 dvrcan5 33203 cgr3tr4 36094 cgr3rflx 36096 endofsegid 36127 seglemin 36155 broutsideof2 36164 rngosubdi 37993 rngosubdir 37994 isdrngo2 38006 crngm23 38050 dmncan2 38125 latmassOLD 39276 latm32 39278 cvrnbtwn4 39326 cvrcmp2 39331 ltcvrntr 39471 atcvrj0 39475 3dim3 39516 paddasslem17 39883 paddass 39885 lautlt 40138 lautcvr 40139 lautj 40140 lautm 40141 erngdvlem3 41037 dvalveclem 41072 mendlmod 43230 |
| Copyright terms: Public domain | W3C validator |