![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1119 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1168 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: dif1en 9198 ccatswrd 14702 plttr 18399 pltletr 18400 latjlej1 18510 latjlej2 18511 latnlej 18513 latnlej2 18516 latmlem2 18527 latledi 18534 latjass 18540 latj32 18542 latj13 18543 ipopos 18593 tsrlemax 18643 imasmnd2 18799 grpsubsub 19059 grpnnncan2 19067 imasgrp2 19085 mulgnn0ass 19140 mulgsubdir 19144 cmn32 19832 ablsubadd 19841 imasrng 20194 imasring 20343 isdomn4 20732 zntoslem 21592 xmettri3 24378 mettri3 24379 xmetrtri 24380 xmetrtri2 24381 metrtri 24382 cphdivcl 25229 cphassr 25259 relogbmulexp 26835 grpodivdiv 30568 grpomuldivass 30569 ablo32 30577 ablodivdiv4 30582 ablodiv32 30583 nvmdi 30676 dipdi 30871 dipassr 30874 dipsubdir 30876 dipsubdi 30877 dvrcan5 33225 cgr3tr4 36033 cgr3rflx 36035 endofsegid 36066 seglemin 36094 broutsideof2 36103 rngosubdi 37931 rngosubdir 37932 isdrngo2 37944 crngm23 37988 dmncan2 38063 latmassOLD 39210 latm32 39212 cvrnbtwn4 39260 cvrcmp2 39265 ltcvrntr 39406 atcvrj0 39410 3dim3 39451 paddasslem17 39818 paddass 39820 lautlt 40073 lautcvr 40074 lautj 40075 lautm 40076 erngdvlem3 40972 dvalveclem 41007 mendlmod 43177 |
Copyright terms: Public domain | W3C validator |