| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1en 9075 ccatswrd 14575 plttr 18246 pltletr 18247 latjlej1 18359 latjlej2 18360 latnlej 18362 latnlej2 18365 latmlem2 18376 latledi 18383 latjass 18389 latj32 18391 latj13 18392 ipopos 18442 tsrlemax 18492 imasmnd2 18648 grpsubsub 18908 grpnnncan2 18916 imasgrp2 18934 mulgnn0ass 18989 mulgsubdir 18993 cmn32 19679 ablsubadd 19688 imasrng 20062 imasring 20215 isdomn4 20601 zntoslem 21463 xmettri3 24239 mettri3 24240 xmetrtri 24241 xmetrtri2 24242 metrtri 24243 cphdivcl 25080 cphassr 25110 relogbmulexp 26686 grpodivdiv 30484 grpomuldivass 30485 ablo32 30493 ablodivdiv4 30498 ablodiv32 30499 nvmdi 30592 dipdi 30787 dipassr 30790 dipsubdir 30792 dipsubdi 30793 dvrcan5 33176 cgr3tr4 36026 cgr3rflx 36028 endofsegid 36059 seglemin 36087 broutsideof2 36096 rngosubdi 37925 rngosubdir 37926 isdrngo2 37938 crngm23 37982 dmncan2 38057 latmassOLD 39208 latm32 39210 cvrnbtwn4 39258 cvrcmp2 39263 ltcvrntr 39403 atcvrj0 39407 3dim3 39448 paddasslem17 39815 paddass 39817 lautlt 40070 lautcvr 40071 lautj 40072 lautm 40073 erngdvlem3 40969 dvalveclem 41004 mendlmod 43162 |
| Copyright terms: Public domain | W3C validator |