| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1en 9101 ccatswrd 14609 plttr 18281 pltletr 18282 latjlej1 18394 latjlej2 18395 latnlej 18397 latnlej2 18400 latmlem2 18411 latledi 18418 latjass 18424 latj32 18426 latj13 18427 ipopos 18477 tsrlemax 18527 imasmnd2 18683 grpsubsub 18943 grpnnncan2 18951 imasgrp2 18969 mulgnn0ass 19024 mulgsubdir 19028 cmn32 19714 ablsubadd 19723 imasrng 20097 imasring 20250 isdomn4 20636 zntoslem 21498 xmettri3 24274 mettri3 24275 xmetrtri 24276 xmetrtri2 24277 metrtri 24278 cphdivcl 25115 cphassr 25145 relogbmulexp 26721 grpodivdiv 30519 grpomuldivass 30520 ablo32 30528 ablodivdiv4 30533 ablodiv32 30534 nvmdi 30627 dipdi 30822 dipassr 30825 dipsubdir 30827 dipsubdi 30828 dvrcan5 33203 cgr3tr4 36033 cgr3rflx 36035 endofsegid 36066 seglemin 36094 broutsideof2 36103 rngosubdi 37932 rngosubdir 37933 isdrngo2 37945 crngm23 37989 dmncan2 38064 latmassOLD 39215 latm32 39217 cvrnbtwn4 39265 cvrcmp2 39270 ltcvrntr 39411 atcvrj0 39415 3dim3 39456 paddasslem17 39823 paddass 39825 lautlt 40078 lautcvr 40079 lautj 40080 lautm 40081 erngdvlem3 40977 dvalveclem 41012 mendlmod 43171 |
| Copyright terms: Public domain | W3C validator |