![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1113 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1162 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1082 |
This theorem is referenced by: plttr 17414 pltletr 17415 latjlej1 17509 latjlej2 17510 latnlej 17512 latnlej2 17515 latmlem2 17526 latledi 17533 latjass 17539 latj32 17541 latj13 17542 ipopos 17604 tsrlemax 17664 imasmnd2 17771 grpsubsub 17950 grpnnncan2 17958 imasgrp2 17976 mulgnn0ass 18022 mulgsubdir 18026 cmn32 18656 ablsubadd 18662 imasring 19064 zntoslem 20390 xmettri3 22651 mettri3 22652 xmetrtri 22653 xmetrtri2 22654 metrtri 22655 cphdivcl 23474 cphassr 23504 relogbmulexp 25042 grpodivdiv 28013 grpomuldivass 28014 ablo32 28022 ablodivdiv4 28027 ablodiv32 28028 nvmdi 28121 dipdi 28316 dipassr 28319 dipsubdir 28321 dipsubdi 28322 dvrcan5 30523 cgr3tr4 33128 cgr3rflx 33130 endofsegid 33161 seglemin 33189 broutsideof2 33198 rngosubdi 34780 rngosubdir 34781 isdrngo2 34793 crngm23 34837 dmncan2 34912 latmassOLD 35921 latm32 35923 cvrnbtwn4 35971 cvrcmp2 35976 ltcvrntr 36116 atcvrj0 36120 3dim3 36161 paddasslem17 36528 paddass 36530 lautlt 36783 lautcvr 36784 lautj 36785 lautm 36786 erngdvlem3 37682 dvalveclem 37717 mendlmod 39303 |
Copyright terms: Public domain | W3C validator |