MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Structured version   Visualization version   GIF version

Theorem abvdiv 20352
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdiv.p / = (/r𝑅)
Assertion
Ref Expression
abvdiv (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 767 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simpr1 1194 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simpll 765 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑅 ∈ DivRing)
4 simpr2 1195 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌𝐵)
5 simpr3 1196 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌0 )
6 abvneg.b . . . . . 6 𝐵 = (Base‘𝑅)
7 abvrec.z . . . . . 6 0 = (0g𝑅)
8 eqid 2731 . . . . . 6 (invr𝑅) = (invr𝑅)
96, 7, 8drnginvrcl 20246 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑌𝐵𝑌0 ) → ((invr𝑅)‘𝑌) ∈ 𝐵)
103, 4, 5, 9syl3anc 1371 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((invr𝑅)‘𝑌) ∈ 𝐵)
11 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
12 eqid 2731 . . . . 5 (.r𝑅) = (.r𝑅)
1311, 6, 12abvmul 20344 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
141, 2, 10, 13syl3anc 1371 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
1511, 6, 7, 8abvrec 20351 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
16153adantr1 1169 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
1716oveq2d 7378 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
1814, 17eqtrd 2771 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
19 eqid 2731 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
206, 19, 7drngunit 20230 . . . . . 6 (𝑅 ∈ DivRing → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
213, 20syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
224, 5, 21mpbir2and 711 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌 ∈ (Unit‘𝑅))
23 abvdiv.p . . . . 5 / = (/r𝑅)
246, 12, 19, 8, 23dvrval 20128 . . . 4 ((𝑋𝐵𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
252, 22, 24syl2anc 584 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2625fveq2d 6851 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))))
2711, 6abvcl 20339 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
281, 2, 27syl2anc 584 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
2928recnd 11192 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
3011, 6abvcl 20339 . . . . 5 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
311, 4, 30syl2anc 584 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
3231recnd 11192 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
3311, 6, 7abvne0 20342 . . . 4 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
341, 4, 5, 33syl3anc 1371 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
3529, 32, 34divrecd 11943 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) / (𝐹𝑌)) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
3618, 26, 353eqtr4d 2781 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  cfv 6501  (class class class)co 7362  cr 11059  0cc0 11060  1c1 11061   · cmul 11065   / cdiv 11821  Basecbs 17094  .rcmulr 17148  0gc0g 17335  Unitcui 20082  invrcinvr 20114  /rcdvr 20125  DivRingcdr 20225  AbsValcabv 20331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-ico 13280  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-0g 17337  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-grp 18765  df-minusg 18766  df-mgp 19911  df-ur 19928  df-ring 19980  df-oppr 20063  df-dvdsr 20084  df-unit 20085  df-invr 20115  df-dvr 20126  df-drng 20227  df-abv 20332
This theorem is referenced by:  ostthlem1  27012
  Copyright terms: Public domain W3C validator