MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Structured version   Visualization version   GIF version

Theorem abvdiv 19105
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdiv.p / = (/r𝑅)
Assertion
Ref Expression
abvdiv (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 785 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simpr1 1248 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simpll 783 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑅 ∈ DivRing)
4 simpr2 1250 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌𝐵)
5 simpr3 1252 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌0 )
6 abvneg.b . . . . . 6 𝐵 = (Base‘𝑅)
7 abvrec.z . . . . . 6 0 = (0g𝑅)
8 eqid 2764 . . . . . 6 (invr𝑅) = (invr𝑅)
96, 7, 8drnginvrcl 19032 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑌𝐵𝑌0 ) → ((invr𝑅)‘𝑌) ∈ 𝐵)
103, 4, 5, 9syl3anc 1490 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((invr𝑅)‘𝑌) ∈ 𝐵)
11 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
12 eqid 2764 . . . . 5 (.r𝑅) = (.r𝑅)
1311, 6, 12abvmul 19097 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
141, 2, 10, 13syl3anc 1490 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
1511, 6, 7, 8abvrec 19104 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
16153adantr1 1210 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
1716oveq2d 6857 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
1814, 17eqtrd 2798 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
19 eqid 2764 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
206, 19, 7drngunit 19020 . . . . . 6 (𝑅 ∈ DivRing → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
213, 20syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
224, 5, 21mpbir2and 704 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌 ∈ (Unit‘𝑅))
23 abvdiv.p . . . . 5 / = (/r𝑅)
246, 12, 19, 8, 23dvrval 18951 . . . 4 ((𝑋𝐵𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
252, 22, 24syl2anc 579 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2625fveq2d 6378 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))))
2711, 6abvcl 19092 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
281, 2, 27syl2anc 579 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
2928recnd 10321 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
3011, 6abvcl 19092 . . . . 5 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
311, 4, 30syl2anc 579 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
3231recnd 10321 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
3311, 6, 7abvne0 19095 . . . 4 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
341, 4, 5, 33syl3anc 1490 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
3529, 32, 34divrecd 11057 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) / (𝐹𝑌)) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
3618, 26, 353eqtr4d 2808 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2936  cfv 6067  (class class class)co 6841  cr 10187  0cc0 10188  1c1 10189   · cmul 10193   / cdiv 10937  Basecbs 16131  .rcmulr 16216  0gc0g 16367  Unitcui 18905  invrcinvr 18937  /rcdvr 18948  DivRingcdr 19015  AbsValcabv 19084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-tpos 7554  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-er 7946  df-map 8061  df-en 8160  df-dom 8161  df-sdom 8162  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-ico 12382  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-plusg 16228  df-mulr 16229  df-0g 16369  df-mgm 17509  df-sgrp 17551  df-mnd 17562  df-grp 17693  df-minusg 17694  df-mgp 18756  df-ur 18768  df-ring 18815  df-oppr 18889  df-dvdsr 18907  df-unit 18908  df-invr 18938  df-dvr 18949  df-drng 19017  df-abv 19085
This theorem is referenced by:  ostthlem1  25606
  Copyright terms: Public domain W3C validator