MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Structured version   Visualization version   GIF version

Theorem abvdiv 20012
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdiv.p / = (/r𝑅)
Assertion
Ref Expression
abvdiv (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 765 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simpr1 1192 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simpll 763 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑅 ∈ DivRing)
4 simpr2 1193 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌𝐵)
5 simpr3 1194 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌0 )
6 abvneg.b . . . . . 6 𝐵 = (Base‘𝑅)
7 abvrec.z . . . . . 6 0 = (0g𝑅)
8 eqid 2738 . . . . . 6 (invr𝑅) = (invr𝑅)
96, 7, 8drnginvrcl 19923 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑌𝐵𝑌0 ) → ((invr𝑅)‘𝑌) ∈ 𝐵)
103, 4, 5, 9syl3anc 1369 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((invr𝑅)‘𝑌) ∈ 𝐵)
11 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
12 eqid 2738 . . . . 5 (.r𝑅) = (.r𝑅)
1311, 6, 12abvmul 20004 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
141, 2, 10, 13syl3anc 1369 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
1511, 6, 7, 8abvrec 20011 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
16153adantr1 1167 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
1716oveq2d 7271 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
1814, 17eqtrd 2778 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
19 eqid 2738 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
206, 19, 7drngunit 19911 . . . . . 6 (𝑅 ∈ DivRing → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
213, 20syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
224, 5, 21mpbir2and 709 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌 ∈ (Unit‘𝑅))
23 abvdiv.p . . . . 5 / = (/r𝑅)
246, 12, 19, 8, 23dvrval 19842 . . . 4 ((𝑋𝐵𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
252, 22, 24syl2anc 583 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2625fveq2d 6760 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))))
2711, 6abvcl 19999 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
281, 2, 27syl2anc 583 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
2928recnd 10934 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
3011, 6abvcl 19999 . . . . 5 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
311, 4, 30syl2anc 583 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
3231recnd 10934 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
3311, 6, 7abvne0 20002 . . . 4 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
341, 4, 5, 33syl3anc 1369 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
3529, 32, 34divrecd 11684 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) / (𝐹𝑌)) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
3618, 26, 353eqtr4d 2788 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Unitcui 19796  invrcinvr 19828  /rcdvr 19839  DivRingcdr 19906  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-ico 13014  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-abv 19992
This theorem is referenced by:  ostthlem1  26680
  Copyright terms: Public domain W3C validator