Proof of Theorem abvdiv
| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝐹 ∈ 𝐴) |
| 2 | | simpr1 1194 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ 𝐵) |
| 3 | | simpll 766 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑅 ∈
DivRing) |
| 4 | | simpr2 1195 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ 𝐵) |
| 5 | | simpr3 1196 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ≠ 0 ) |
| 6 | | abvneg.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 7 | | abvrec.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 8 | | eqid 2734 |
. . . . . 6
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 9 | 6, 7, 8 | drnginvrcl 20726 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) →
((invr‘𝑅)‘𝑌) ∈ 𝐵) |
| 10 | 3, 4, 5, 9 | syl3anc 1372 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) →
((invr‘𝑅)‘𝑌) ∈ 𝐵) |
| 11 | | abv0.a |
. . . . 5
⊢ 𝐴 = (AbsVal‘𝑅) |
| 12 | | eqid 2734 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 13 | 11, 6, 12 | abvmul 20795 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (𝐹‘((invr‘𝑅)‘𝑌)))) |
| 14 | 1, 2, 10, 13 | syl3anc 1372 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (𝐹‘((invr‘𝑅)‘𝑌)))) |
| 15 | 11, 6, 7, 8 | abvrec 20802 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘((invr‘𝑅)‘𝑌)) = (1 / (𝐹‘𝑌))) |
| 16 | 15 | 3adantr1 1169 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘((invr‘𝑅)‘𝑌)) = (1 / (𝐹‘𝑌))) |
| 17 | 16 | oveq2d 7430 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (1 / (𝐹‘𝑌)))) |
| 18 | 14, 17 | eqtrd 2769 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (1 / (𝐹‘𝑌)))) |
| 19 | | eqid 2734 |
. . . . . . 7
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 20 | 6, 19, 7 | drngunit 20707 |
. . . . . 6
⊢ (𝑅 ∈ DivRing → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ))) |
| 21 | 3, 20 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ))) |
| 22 | 4, 5, 21 | mpbir2and 713 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ (Unit‘𝑅)) |
| 23 | | abvdiv.p |
. . . . 5
⊢ / =
(/r‘𝑅) |
| 24 | 6, 12, 19, 8, 23 | dvrval 20376 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 25 | 2, 22, 24 | syl2anc 584 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 26 | 25 | fveq2d 6891 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)))) |
| 27 | 11, 6 | abvcl 20790 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| 28 | 1, 2, 27 | syl2anc 584 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
| 29 | 28 | recnd 11272 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
| 30 | 11, 6 | abvcl 20790 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ ℝ) |
| 31 | 1, 4, 30 | syl2anc 584 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℝ) |
| 32 | 31 | recnd 11272 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℂ) |
| 33 | 11, 6, 7 | abvne0 20793 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → (𝐹‘𝑌) ≠ 0) |
| 34 | 1, 4, 5, 33 | syl3anc 1372 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ≠ 0) |
| 35 | 29, 32, 34 | divrecd 12029 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘𝑋) / (𝐹‘𝑌)) = ((𝐹‘𝑋) · (1 / (𝐹‘𝑌)))) |
| 36 | 18, 26, 35 | 3eqtr4d 2779 |
1
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹‘𝑋) / (𝐹‘𝑌))) |