Proof of Theorem abvdiv
Step | Hyp | Ref
| Expression |
1 | | simplr 766 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝐹 ∈ 𝐴) |
2 | | simpr1 1193 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ 𝐵) |
3 | | simpll 764 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑅 ∈
DivRing) |
4 | | simpr2 1194 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ 𝐵) |
5 | | simpr3 1195 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ≠ 0 ) |
6 | | abvneg.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
7 | | abvrec.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
8 | | eqid 2738 |
. . . . . 6
⊢
(invr‘𝑅) = (invr‘𝑅) |
9 | 6, 7, 8 | drnginvrcl 20008 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) →
((invr‘𝑅)‘𝑌) ∈ 𝐵) |
10 | 3, 4, 5, 9 | syl3anc 1370 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) →
((invr‘𝑅)‘𝑌) ∈ 𝐵) |
11 | | abv0.a |
. . . . 5
⊢ 𝐴 = (AbsVal‘𝑅) |
12 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
13 | 11, 6, 12 | abvmul 20089 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (𝐹‘((invr‘𝑅)‘𝑌)))) |
14 | 1, 2, 10, 13 | syl3anc 1370 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (𝐹‘((invr‘𝑅)‘𝑌)))) |
15 | 11, 6, 7, 8 | abvrec 20096 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘((invr‘𝑅)‘𝑌)) = (1 / (𝐹‘𝑌))) |
16 | 15 | 3adantr1 1168 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘((invr‘𝑅)‘𝑌)) = (1 / (𝐹‘𝑌))) |
17 | 16 | oveq2d 7291 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (1 / (𝐹‘𝑌)))) |
18 | 14, 17 | eqtrd 2778 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) = ((𝐹‘𝑋) · (1 / (𝐹‘𝑌)))) |
19 | | eqid 2738 |
. . . . . . 7
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
20 | 6, 19, 7 | drngunit 19996 |
. . . . . 6
⊢ (𝑅 ∈ DivRing → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ))) |
21 | 3, 20 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ))) |
22 | 4, 5, 21 | mpbir2and 710 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ (Unit‘𝑅)) |
23 | | abvdiv.p |
. . . . 5
⊢ / =
(/r‘𝑅) |
24 | 6, 12, 19, 8, 23 | dvrval 19927 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
25 | 2, 22, 24 | syl2anc 584 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
26 | 25 | fveq2d 6778 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = (𝐹‘(𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)))) |
27 | 11, 6 | abvcl 20084 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
28 | 1, 2, 27 | syl2anc 584 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
29 | 28 | recnd 11003 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
30 | 11, 6 | abvcl 20084 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ ℝ) |
31 | 1, 4, 30 | syl2anc 584 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℝ) |
32 | 31 | recnd 11003 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℂ) |
33 | 11, 6, 7 | abvne0 20087 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → (𝐹‘𝑌) ≠ 0) |
34 | 1, 4, 5, 33 | syl3anc 1370 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ≠ 0) |
35 | 29, 32, 34 | divrecd 11754 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘𝑋) / (𝐹‘𝑌)) = ((𝐹‘𝑋) · (1 / (𝐹‘𝑌)))) |
36 | 18, 26, 35 | 3eqtr4d 2788 |
1
⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹‘𝑋) / (𝐹‘𝑌))) |