Step | Hyp | Ref
| Expression |
1 | | imasring.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | imasring.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | imasring.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
4 | | imasring.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | 1, 2, 3, 4 | imasbas 17140 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
6 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (+g‘𝑈) = (+g‘𝑈)) |
7 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (.r‘𝑈) = (.r‘𝑈)) |
8 | | imasring.p |
. . . . . 6
⊢ + =
(+g‘𝑅) |
9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → + =
(+g‘𝑅)) |
10 | | imasring.e1 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
11 | | ringgrp 19703 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
12 | 4, 11 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Grp) |
13 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
14 | 1, 2, 9, 3, 10, 12, 13 | imasgrp 18606 |
. . . 4
⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) |
15 | 14 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑈 ∈ Grp) |
16 | | imasring.e2 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
17 | | imasring.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
18 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑈) = (.r‘𝑈) |
19 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑅 ∈ Ring) |
20 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ 𝑉) |
21 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
22 | 20, 21 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ (Base‘𝑅)) |
23 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) |
24 | 23, 21 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ (Base‘𝑅)) |
25 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
26 | 25, 17 | ringcl 19715 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 · 𝑣) ∈ (Base‘𝑅)) |
27 | 19, 22, 24, 26 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 · 𝑣) ∈ (Base‘𝑅)) |
28 | 27, 21 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 · 𝑣) ∈ 𝑉) |
29 | 28 | caovclg 7442 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
30 | 3, 16, 1, 2, 4, 17,
18, 29 | imasmulf 17164 |
. . . 4
⊢ (𝜑 → (.r‘𝑈):(𝐵 × 𝐵)⟶𝐵) |
31 | | fovrn 7420 |
. . . 4
⊢
(((.r‘𝑈):(𝐵 × 𝐵)⟶𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(.r‘𝑈)𝑣) ∈ 𝐵) |
32 | 30, 31 | syl3an1 1161 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(.r‘𝑈)𝑣) ∈ 𝐵) |
33 | | forn 6675 |
. . . . . . . . . 10
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
34 | 3, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 = 𝐵) |
35 | 34 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵)) |
36 | 34 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵)) |
37 | 34 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵)) |
38 | 35, 36, 37 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
39 | | fofn 6674 |
. . . . . . . . 9
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) |
40 | 3, 39 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝑉) |
41 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) |
42 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣)) |
43 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) |
44 | 41, 42, 43 | 3anbi123d 1434 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
45 | 40, 44 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
46 | 38, 45 | bitr3d 280 |
. . . . . 6
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
47 | | 3reeanv 3293 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) |
48 | 46, 47 | bitr4di 288 |
. . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤))) |
49 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑅 ∈ Ring) |
50 | | simp2 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
51 | 2 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) |
52 | 50, 51 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
53 | 52 | 3adant3r3 1182 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
54 | | simp3 1136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
55 | 54, 51 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (Base‘𝑅)) |
56 | 55 | 3adant3r3 1182 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
57 | | simpr3 1194 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) |
58 | 2 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
59 | 57, 58 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ (Base‘𝑅)) |
60 | 25, 17 | ringass 19718 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
61 | 49, 53, 56, 59, 60 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
62 | 61 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 · 𝑦) · 𝑧)) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) |
63 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝜑) |
64 | 28 | caovclg 7442 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
65 | 64 | 3adantr3 1169 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
66 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧))) |
67 | 63, 65, 57, 66 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧))) |
68 | | simpr1 1192 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
69 | 28 | caovclg 7442 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 · 𝑧) ∈ 𝑉) |
70 | 69 | 3adantr1 1167 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 · 𝑧) ∈ 𝑉) |
71 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) |
72 | 63, 68, 70, 71 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) |
73 | 62, 67, 72 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
74 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
75 | 74 | 3adant3r3 1182 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
76 | 75 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧))) |
77 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 · 𝑧))) |
78 | 77 | 3adant3r1 1180 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 · 𝑧))) |
79 | 78 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
80 | 73, 76, 79 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)))) |
81 | | simp1 1134 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑥) = 𝑢) |
82 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑦) = 𝑣) |
83 | 81, 82 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝑢(.r‘𝑈)𝑣)) |
84 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) = 𝑤) |
85 | 83, 84 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤)) |
86 | 82, 84 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝑣(.r‘𝑈)𝑤)) |
87 | 81, 86 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
88 | 85, 87 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
89 | 80, 88 | syl5ibcom 244 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
90 | 89 | 3exp2 1352 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))))))) |
91 | 90 | imp32 418 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))))) |
92 | 91 | rexlimdv 3211 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
93 | 92 | rexlimdvva 3222 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
94 | 48, 93 | sylbid 239 |
. . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
95 | 94 | imp 406 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
96 | 25, 8, 17 | ringdi 19720 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
97 | 49, 53, 56, 59, 96 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
98 | 97 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑥 · (𝑦 + 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
99 | 25, 8 | ringacl 19732 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 + 𝑣) ∈ (Base‘𝑅)) |
100 | 19, 22, 24, 99 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 + 𝑣) ∈ (Base‘𝑅)) |
101 | 100, 21 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 + 𝑣) ∈ 𝑉) |
102 | 101 | caovclg 7442 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) |
103 | 102 | 3adantr1 1167 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) |
104 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧)))) |
105 | 63, 68, 103, 104 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧)))) |
106 | 28 | caovclg 7442 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑧) ∈ 𝑉) |
107 | 106 | 3adantr2 1168 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑧) ∈ 𝑉) |
108 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝑈) = (+g‘𝑈) |
109 | 3, 10, 1, 2, 4, 8, 108 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ (𝑥 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
110 | 63, 65, 107, 109 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
111 | 98, 105, 110 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧)))) |
112 | 3, 10, 1, 2, 4, 8, 108 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
113 | 112 | 3adant3r1 1180 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
114 | 113 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧)))) |
115 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑥 · 𝑧))) |
116 | 115 | 3adant3r2 1181 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑥 · 𝑧))) |
117 | 75, 116 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧)))) |
118 | 111, 114,
117 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)))) |
119 | 82, 84 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝑣(+g‘𝑈)𝑤)) |
120 | 81, 119 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤))) |
121 | 81, 84 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝑢(.r‘𝑈)𝑤)) |
122 | 83, 121 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))) |
123 | 120, 122 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) ↔ (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
124 | 118, 123 | syl5ibcom 244 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
125 | 124 | 3exp2 1352 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))))))) |
126 | 125 | imp32 418 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))))) |
127 | 126 | rexlimdv 3211 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
128 | 127 | rexlimdvva 3222 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
129 | 48, 128 | sylbid 239 |
. . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) |
130 | 129 | imp 406 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))) |
131 | 25, 8, 17 | ringdir 19721 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
132 | 49, 53, 56, 59, 131 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
133 | 132 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) · 𝑧)) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
134 | 101 | caovclg 7442 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
135 | 134 | 3adantr3 1169 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
136 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧))) |
137 | 63, 135, 57, 136 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧))) |
138 | 3, 10, 1, 2, 4, 8, 108 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 · 𝑧) ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
139 | 63, 107, 70, 138 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
140 | 133, 137,
139 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
141 | 3, 10, 1, 2, 4, 8, 108 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
142 | 141 | 3adant3r3 1182 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
143 | 142 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧))) |
144 | 116, 78 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧)))) |
145 | 140, 143,
144 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)))) |
146 | 81, 82 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝑢(+g‘𝑈)𝑣)) |
147 | 146, 84 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤)) |
148 | 121, 86 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
149 | 147, 148 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
150 | 145, 149 | syl5ibcom 244 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
151 | 150 | 3exp2 1352 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))))))) |
152 | 151 | imp32 418 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))))) |
153 | 152 | rexlimdv 3211 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
154 | 153 | rexlimdvva 3222 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
155 | 48, 154 | sylbid 239 |
. . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) |
156 | 155 | imp 406 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))) |
157 | | fof 6672 |
. . . . 5
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
158 | 3, 157 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
159 | | imasring.o |
. . . . . . 7
⊢ 1 =
(1r‘𝑅) |
160 | 25, 159 | ringidcl 19722 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
161 | 4, 160 | syl 17 |
. . . . 5
⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
162 | 161, 2 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 1 ∈ 𝑉) |
163 | 158, 162 | ffvelrnd 6944 |
. . 3
⊢ (𝜑 → (𝐹‘ 1 ) ∈ 𝐵) |
164 | 40, 41 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) |
165 | 35, 164 | bitr3d 280 |
. . . . 5
⊢ (𝜑 → (𝑢 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) |
166 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝜑) |
167 | 162 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 1 ∈ 𝑉) |
168 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
169 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 1
)(.r‘𝑈)(𝐹‘𝑥)) = (𝐹‘( 1 · 𝑥))) |
170 | 166, 167,
168, 169 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 1
)(.r‘𝑈)(𝐹‘𝑥)) = (𝐹‘( 1 · 𝑥))) |
171 | 2 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
172 | 171 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
173 | 25, 17, 159 | ringlidm 19725 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ( 1 · 𝑥) = 𝑥) |
174 | 4, 172, 173 | syl2an2r 681 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) |
175 | 174 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 1 · 𝑥)) = (𝐹‘𝑥)) |
176 | 170, 175 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 1
)(.r‘𝑈)(𝐹‘𝑥)) = (𝐹‘𝑥)) |
177 | | oveq2 7263 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → ((𝐹‘ 1
)(.r‘𝑈)(𝐹‘𝑥)) = ((𝐹‘ 1
)(.r‘𝑈)𝑢)) |
178 | | id 22 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → (𝐹‘𝑥) = 𝑢) |
179 | 177, 178 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑢 → (((𝐹‘ 1
)(.r‘𝑈)(𝐹‘𝑥)) = (𝐹‘𝑥) ↔ ((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢)) |
180 | 176, 179 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥) = 𝑢 → ((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢)) |
181 | 180 | rexlimdva 3212 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 → ((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢)) |
182 | 165, 181 | sylbid 239 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐵 → ((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢)) |
183 | 182 | imp 406 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → ((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢) |
184 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 1 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘ 1 )) = (𝐹‘(𝑥 · 1 ))) |
185 | 167, 184 | mpd3an3 1460 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘ 1 )) = (𝐹‘(𝑥 · 1 ))) |
186 | 25, 17, 159 | ringridm 19726 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 · 1 ) = 𝑥) |
187 | 4, 172, 186 | syl2an2r 681 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑥 · 1 ) = 𝑥) |
188 | 187 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 · 1 )) = (𝐹‘𝑥)) |
189 | 185, 188 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘ 1 )) = (𝐹‘𝑥)) |
190 | | oveq1 7262 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘ 1 )) = (𝑢(.r‘𝑈)(𝐹‘ 1 ))) |
191 | 190, 178 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑢 → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘ 1 )) = (𝐹‘𝑥) ↔ (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢)) |
192 | 189, 191 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥) = 𝑢 → (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢)) |
193 | 192 | rexlimdva 3212 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 → (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢)) |
194 | 165, 193 | sylbid 239 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐵 → (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢)) |
195 | 194 | imp 406 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢) |
196 | 5, 6, 7, 15, 32, 95, 130, 156, 163, 183, 195 | isringd 19739 |
. 2
⊢ (𝜑 → 𝑈 ∈ Ring) |
197 | 163, 5 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → (𝐹‘ 1 ) ∈ (Base‘𝑈)) |
198 | 5 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝐵 ↔ 𝑢 ∈ (Base‘𝑈))) |
199 | 182, 194 | jcad 512 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝐵 → (((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢 ∧ (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢))) |
200 | 198, 199 | sylbird 259 |
. . . . 5
⊢ (𝜑 → (𝑢 ∈ (Base‘𝑈) → (((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢 ∧ (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢))) |
201 | 200 | ralrimiv 3106 |
. . . 4
⊢ (𝜑 → ∀𝑢 ∈ (Base‘𝑈)(((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢 ∧ (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢)) |
202 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑈) =
(Base‘𝑈) |
203 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝑈) = (1r‘𝑈) |
204 | 202, 18, 203 | isringid 19727 |
. . . . 5
⊢ (𝑈 ∈ Ring → (((𝐹‘ 1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢 ∧ (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢)) ↔ (1r‘𝑈) = (𝐹‘ 1 ))) |
205 | 196, 204 | syl 17 |
. . . 4
⊢ (𝜑 → (((𝐹‘ 1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹‘ 1
)(.r‘𝑈)𝑢) = 𝑢 ∧ (𝑢(.r‘𝑈)(𝐹‘ 1 )) = 𝑢)) ↔ (1r‘𝑈) = (𝐹‘ 1 ))) |
206 | 197, 201,
205 | mpbi2and 708 |
. . 3
⊢ (𝜑 → (1r‘𝑈) = (𝐹‘ 1 )) |
207 | 206 | eqcomd 2744 |
. 2
⊢ (𝜑 → (𝐹‘ 1 ) =
(1r‘𝑈)) |
208 | 196, 207 | jca 511 |
1
⊢ (𝜑 → (𝑈 ∈ Ring ∧ (𝐹‘ 1 ) =
(1r‘𝑈))) |