Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On) |
2 | | sucelon 7639 |
. . . . . 6
⊢ (𝐵 ∈ On ↔ suc 𝐵 ∈ On) |
3 | 1, 2 | sylib 217 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ∈ On) |
4 | | simp1 1134 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On) |
5 | | on0eln0 6306 |
. . . . . . 7
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
6 | 5 | biimpar 477 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅
∈ 𝐴) |
7 | 6 | 3adant2 1129 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∅
∈ 𝐴) |
8 | | omword2 8367 |
. . . . 5
⊢ (((suc
𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵)) |
9 | 3, 4, 7, 8 | syl21anc 834 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵)) |
10 | | sucidg 6329 |
. . . . 5
⊢ (𝐵 ∈ On → 𝐵 ∈ suc 𝐵) |
11 | | ssel 3910 |
. . . . 5
⊢ (suc
𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ suc 𝐵 → 𝐵 ∈ (𝐴 ·o suc 𝐵))) |
12 | 10, 11 | syl5 34 |
. . . 4
⊢ (suc
𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ·o suc 𝐵))) |
13 | 9, 1, 12 | sylc 65 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ (𝐴 ·o suc 𝐵)) |
14 | | suceq 6316 |
. . . . . 6
⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) |
15 | 14 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝐵)) |
16 | 15 | eleq2d 2824 |
. . . 4
⊢ (𝑥 = 𝐵 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝐵))) |
17 | 16 | rspcev 3552 |
. . 3
⊢ ((𝐵 ∈ On ∧ 𝐵 ∈ (𝐴 ·o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥)) |
18 | 1, 13, 17 | syl2anc 583 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥)) |
19 | | suceq 6316 |
. . . . . 6
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) |
20 | 19 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝑧)) |
21 | 20 | eleq2d 2824 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
22 | 21 | onminex 7629 |
. . 3
⊢
(∃𝑥 ∈ On
𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
23 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
24 | 23 | elon 6260 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
25 | | ordzsl 7667 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥)) |
26 | 24, 25 | bitri 274 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥)) |
27 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o
∅)) |
28 | | om0 8309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ On → (𝐴 ·o ∅) =
∅) |
29 | 27, 28 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝑥 = ∅) → (𝐴 ·o 𝑥) = ∅) |
30 | | ne0i 4265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ (𝐴 ·o 𝑥) → (𝐴 ·o 𝑥) ≠ ∅) |
31 | 30 | necon2bi 2973 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ·o 𝑥) = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
32 | 29, 31 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ On ∧ 𝑥 = ∅) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
33 | 32 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
34 | 33 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))) |
35 | 34 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))) |
36 | 35 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
37 | | simp3 1136 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → 𝑥 = suc 𝑤) |
38 | | simp2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) |
39 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = suc 𝑤 → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
40 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑤 ∈ V |
41 | 40 | sucid 6330 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑤 ∈ suc 𝑤 |
42 | | suceq 6316 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤) |
43 | 42 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = 𝑤 → (𝐴 ·o suc 𝑧) = (𝐴 ·o suc 𝑤)) |
44 | 43 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑤 → (𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
45 | 44 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
46 | 45 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ suc 𝑤 → (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
47 | 41, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑧 ∈
suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) |
48 | 39, 47 | syl6bi 252 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = suc 𝑤 → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
49 | 37, 38, 48 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) |
50 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = suc 𝑤 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑤)) |
51 | 50 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = suc 𝑤 → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
52 | 51 | notbid 317 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = suc 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o 𝑥) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
53 | 52 | biimpar 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
54 | 37, 49, 53 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
55 | 54 | 3expia 1119 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
56 | 55 | rexlimdvw 3218 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (∃𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
57 | | ralnex 3163 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ∈
𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)) |
58 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → 𝐴 ∈ On) |
59 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → 𝑥 ∈ V) |
60 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → Lim 𝑥) |
61 | | omlim 8325 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = ∪ 𝑧 ∈ 𝑥 (𝐴 ·o 𝑧)) |
62 | 58, 59, 60, 61 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑥) = ∪ 𝑧 ∈ 𝑥 (𝐴 ·o 𝑧)) |
63 | 62 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 ∈ ∪
𝑧 ∈ 𝑥 (𝐴 ·o 𝑧))) |
64 | | eliun 4925 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ ∪ 𝑧 ∈ 𝑥 (𝐴 ·o 𝑧) ↔ ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o 𝑧)) |
65 | | limord 6310 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Lim
𝑥 → Ord 𝑥) |
66 | 65 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → Ord 𝑥) |
67 | 66, 24 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ On) |
68 | | simp3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑥) |
69 | | onelon 6276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ On) |
70 | 67, 68, 69 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ On) |
71 | | suceloni 7635 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ On → suc 𝑧 ∈ On) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → suc 𝑧 ∈ On) |
73 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝐴 ∈ On) |
74 | | sssucid 6328 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑧 ⊆ suc 𝑧 |
75 | | omwordi 8364 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ suc 𝑧 → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))) |
76 | 74, 75 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧)) |
77 | 70, 72, 73, 76 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧)) |
78 | 77 | sseld 3916 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
79 | 78 | 3expia 1119 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝑧 ∈ 𝑥 → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧)))) |
80 | 79 | reximdvai 3199 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o 𝑧) → ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
81 | 64, 80 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐵 ∈ ∪
𝑧 ∈ 𝑥 (𝐴 ·o 𝑧) → ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
82 | 63, 81 | sylbid 239 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) → ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
83 | 82 | con3d 152 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (¬ ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
84 | 57, 83 | syl5bi 241 |
. . . . . . . . . . . . . . . . 17
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
85 | 84 | expimpd 453 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
86 | 85 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
87 | 86 | 3ad2antl1 1183 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
88 | 36, 56, 87 | 3jaod 1426 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ((𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
89 | 26, 88 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
90 | 89 | impr 454 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
91 | | simpl1 1189 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐴 ∈ On) |
92 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝑥 ∈ On) |
93 | | omcl 8328 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
94 | 91, 92, 93 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ∈ On) |
95 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐵 ∈ On) |
96 | | ontri1 6285 |
. . . . . . . . . . . 12
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
97 | 94, 95, 96 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
98 | 90, 97 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ⊆ 𝐵) |
99 | | oawordex 8350 |
. . . . . . . . . . 11
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
100 | 94, 95, 99 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
101 | 98, 100 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
102 | 101 | 3adantr1 1167 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
103 | | simp3r 1200 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
104 | | simp21 1204 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ (𝐴 ·o suc 𝑥)) |
105 | | simp11 1201 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐴 ∈ On) |
106 | | simp23 1206 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑥 ∈ On) |
107 | | omsuc 8318 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
108 | 105, 106,
107 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
109 | 104, 108 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ ((𝐴 ·o 𝑥) +o 𝐴)) |
110 | 103, 109 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)) |
111 | | simp3l 1199 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦 ∈ On) |
112 | 105, 106,
93 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o 𝑥) ∈ On) |
113 | | oaord 8340 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (𝑦 ∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))) |
114 | 111, 105,
112, 113 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦 ∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))) |
115 | 110, 114 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦 ∈ 𝐴) |
116 | 115, 103 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦 ∈ 𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
117 | 116 | 3expia 1119 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → (𝑦 ∈ 𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) |
118 | 117 | reximdv2 3198 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
119 | 102, 118 | mpd 15 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
120 | 119 | expcom 413 |
. . . . . 6
⊢ ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
121 | 120 | 3expia 1119 |
. . . . 5
⊢ ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) |
122 | 121 | com13 88 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ On → ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) |
123 | 122 | reximdvai 3199 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
124 | 22, 123 | syl5 34 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
125 | 18, 124 | mpd 15 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ On
∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |