MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem1 Structured version   Visualization version   GIF version

Theorem omeulem1 8620
Description: Lemma for omeu 8623: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeulem1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem omeulem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
2 onsucb 7837 . . . . . 6 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ∈ On)
4 simp1 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 on0eln0 6440 . . . . . . 7 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
65biimpar 477 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
763adant2 1132 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
8 omword2 8612 . . . . 5 (((suc 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵))
93, 4, 7, 8syl21anc 838 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵))
10 sucidg 6465 . . . . 5 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
11 ssel 3977 . . . . 5 (suc 𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ suc 𝐵𝐵 ∈ (𝐴 ·o suc 𝐵)))
1210, 11syl5 34 . . . 4 (suc 𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ·o suc 𝐵)))
139, 1, 12sylc 65 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ (𝐴 ·o suc 𝐵))
14 suceq 6450 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1514oveq2d 7447 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝐵))
1615eleq2d 2827 . . . 4 (𝑥 = 𝐵 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝐵)))
1716rspcev 3622 . . 3 ((𝐵 ∈ On ∧ 𝐵 ∈ (𝐴 ·o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥))
181, 13, 17syl2anc 584 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥))
19 suceq 6450 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2019oveq2d 7447 . . . . 5 (𝑥 = 𝑧 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝑧))
2120eleq2d 2827 . . . 4 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
2221onminex 7822 . . 3 (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
23 vex 3484 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2423elon 6393 . . . . . . . . . . . . . 14 (𝑥 ∈ On ↔ Ord 𝑥)
25 ordzsl 7866 . . . . . . . . . . . . . 14 (Ord 𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
2624, 25bitri 275 . . . . . . . . . . . . 13 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
27 oveq2 7439 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
28 om0 8555 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2927, 28sylan9eqr 2799 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 = ∅) → (𝐴 ·o 𝑥) = ∅)
30 ne0i 4341 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (𝐴 ·o 𝑥) → (𝐴 ·o 𝑥) ≠ ∅)
3130necon2bi 2971 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·o 𝑥) = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
3229, 31syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑥 = ∅) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
3332ex 412 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
3433a1d 25 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))))
35343ad2ant1 1134 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))))
3635imp 406 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
37 simp3 1139 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → 𝑥 = suc 𝑤)
38 simp2 1138 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧))
39 raleq 3323 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
40 vex 3484 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
4140sucid 6466 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ suc 𝑤
42 suceq 6450 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤)
4342oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑤 → (𝐴 ·o suc 𝑧) = (𝐴 ·o suc 𝑤))
4443eleq2d 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑤 → (𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4544notbid 318 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4645rspcv 3618 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ suc 𝑤 → (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4741, 46ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))
4839, 47biimtrdi 253 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4937, 38, 48sylc 65 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))
50 oveq2 7439 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = suc 𝑤 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑤))
5150eleq2d 2827 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
5251notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o 𝑥) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
5352biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
5437, 49, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
55543expia 1122 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
5655rexlimdvw 3160 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (∃𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
57 ralnex 3072 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))
58 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝐴 ∈ On)
5923a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝑥 ∈ V)
60 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → Lim 𝑥)
61 omlim 8571 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑧𝑥 (𝐴 ·o 𝑧))
6258, 59, 60, 61syl12anc 837 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ·o 𝑥) = 𝑧𝑥 (𝐴 ·o 𝑧))
6362eleq2d 2827 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 𝑧𝑥 (𝐴 ·o 𝑧)))
64 eliun 4995 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 𝑧𝑥 (𝐴 ·o 𝑧) ↔ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o 𝑧))
65 limord 6444 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑥 → Ord 𝑥)
66653ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → Ord 𝑥)
6766, 24sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑥 ∈ On)
68 simp3 1139 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧𝑥)
69 onelon 6409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
7067, 68, 69syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
71 onsuc 7831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → suc 𝑧 ∈ On)
7270, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → suc 𝑧 ∈ On)
73 simp2 1138 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝐴 ∈ On)
74 sssucid 6464 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 ⊆ suc 𝑧
75 omwordi 8609 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ suc 𝑧 → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧)))
7674, 75mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))
7770, 72, 73, 76syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))
7877sseld 3982 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧)))
79783expia 1122 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → (𝑧𝑥 → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧))))
8079reximdvai 3165 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (∃𝑧𝑥 𝐵 ∈ (𝐴 ·o 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8164, 80biimtrid 242 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 𝑧𝑥 (𝐴 ·o 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8263, 81sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8382con3d 152 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8457, 83biimtrid 242 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐴 ∈ On) → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8584expimpd 453 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8685com12 32 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
87863ad2antl1 1186 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8836, 56, 873jaod 1431 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ((𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8926, 88biimtrid 242 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9089impr 454 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
91 simpl1 1192 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐴 ∈ On)
92 simprr 773 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝑥 ∈ On)
93 omcl 8574 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On)
9491, 92, 93syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ∈ On)
95 simpl2 1193 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐵 ∈ On)
96 ontri1 6418 . . . . . . . . . . . 12 (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9794, 95, 96syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9890, 97mpbird 257 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ⊆ 𝐵)
99 oawordex 8595 . . . . . . . . . . 11 (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10094, 95, 99syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10198, 100mpbid 232 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
1021013adantr1 1170 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
103 simp3r 1203 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
104 simp21 1207 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ (𝐴 ·o suc 𝑥))
105 simp11 1204 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐴 ∈ On)
106 simp23 1209 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑥 ∈ On)
107 omsuc 8564 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
108105, 106, 107syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
109104, 108eleqtrd 2843 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ ((𝐴 ·o 𝑥) +o 𝐴))
110103, 109eqeltrd 2841 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))
111 simp3l 1202 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦 ∈ On)
112105, 106, 93syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o 𝑥) ∈ On)
113 oaord 8585 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
114111, 105, 112, 113syl3anc 1373 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
115110, 114mpbird 257 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦𝐴)
116115, 103jca 511 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
1171163expia 1122 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → (𝑦𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
118117reximdv2 3164 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
119102, 118mpd 15 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
120119expcom 413 . . . . . 6 ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
1211203expia 1122 . . . . 5 ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
122121com13 88 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ On → ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
123122reximdvai 3165 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
12422, 123syl5 34 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
12518, 124mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  wss 3951  c0 4333   ciun 4991  Ord word 6383  Oncon0 6384  Lim wlim 6385  suc csuc 6386  (class class class)co 7431   +o coa 8503   ·o comu 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511
This theorem is referenced by:  omeu  8623  dflim5  43342
  Copyright terms: Public domain W3C validator