MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem1 Structured version   Visualization version   GIF version

Theorem omeulem1 8594
Description: Lemma for omeu 8597: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeulem1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem omeulem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
2 onsucb 7811 . . . . . 6 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ∈ On)
4 simp1 1136 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 on0eln0 6409 . . . . . . 7 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
65biimpar 477 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
763adant2 1131 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
8 omword2 8586 . . . . 5 (((suc 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵))
93, 4, 7, 8syl21anc 837 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵))
10 sucidg 6435 . . . . 5 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
11 ssel 3952 . . . . 5 (suc 𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ suc 𝐵𝐵 ∈ (𝐴 ·o suc 𝐵)))
1210, 11syl5 34 . . . 4 (suc 𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ·o suc 𝐵)))
139, 1, 12sylc 65 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ (𝐴 ·o suc 𝐵))
14 suceq 6419 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1514oveq2d 7421 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝐵))
1615eleq2d 2820 . . . 4 (𝑥 = 𝐵 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝐵)))
1716rspcev 3601 . . 3 ((𝐵 ∈ On ∧ 𝐵 ∈ (𝐴 ·o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥))
181, 13, 17syl2anc 584 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥))
19 suceq 6419 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2019oveq2d 7421 . . . . 5 (𝑥 = 𝑧 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝑧))
2120eleq2d 2820 . . . 4 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
2221onminex 7796 . . 3 (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
23 vex 3463 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2423elon 6361 . . . . . . . . . . . . . 14 (𝑥 ∈ On ↔ Ord 𝑥)
25 ordzsl 7840 . . . . . . . . . . . . . 14 (Ord 𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
2624, 25bitri 275 . . . . . . . . . . . . 13 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
27 oveq2 7413 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
28 om0 8529 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2927, 28sylan9eqr 2792 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 = ∅) → (𝐴 ·o 𝑥) = ∅)
30 ne0i 4316 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (𝐴 ·o 𝑥) → (𝐴 ·o 𝑥) ≠ ∅)
3130necon2bi 2962 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·o 𝑥) = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
3229, 31syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑥 = ∅) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
3332ex 412 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
3433a1d 25 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))))
35343ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))))
3635imp 406 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
37 simp3 1138 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → 𝑥 = suc 𝑤)
38 simp2 1137 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧))
39 raleq 3302 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
40 vex 3463 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
4140sucid 6436 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ suc 𝑤
42 suceq 6419 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤)
4342oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑤 → (𝐴 ·o suc 𝑧) = (𝐴 ·o suc 𝑤))
4443eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑤 → (𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4544notbid 318 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4645rspcv 3597 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ suc 𝑤 → (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4741, 46ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))
4839, 47biimtrdi 253 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4937, 38, 48sylc 65 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))
50 oveq2 7413 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = suc 𝑤 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑤))
5150eleq2d 2820 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
5251notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o 𝑥) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
5352biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
5437, 49, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
55543expia 1121 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
5655rexlimdvw 3146 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (∃𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
57 ralnex 3062 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))
58 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝐴 ∈ On)
5923a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝑥 ∈ V)
60 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → Lim 𝑥)
61 omlim 8545 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑧𝑥 (𝐴 ·o 𝑧))
6258, 59, 60, 61syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ·o 𝑥) = 𝑧𝑥 (𝐴 ·o 𝑧))
6362eleq2d 2820 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 𝑧𝑥 (𝐴 ·o 𝑧)))
64 eliun 4971 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 𝑧𝑥 (𝐴 ·o 𝑧) ↔ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o 𝑧))
65 limord 6413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑥 → Ord 𝑥)
66653ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → Ord 𝑥)
6766, 24sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑥 ∈ On)
68 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧𝑥)
69 onelon 6377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
7067, 68, 69syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
71 onsuc 7805 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → suc 𝑧 ∈ On)
7270, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → suc 𝑧 ∈ On)
73 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝐴 ∈ On)
74 sssucid 6434 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 ⊆ suc 𝑧
75 omwordi 8583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ suc 𝑧 → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧)))
7674, 75mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))
7770, 72, 73, 76syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))
7877sseld 3957 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧)))
79783expia 1121 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → (𝑧𝑥 → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧))))
8079reximdvai 3151 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (∃𝑧𝑥 𝐵 ∈ (𝐴 ·o 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8164, 80biimtrid 242 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 𝑧𝑥 (𝐴 ·o 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8263, 81sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8382con3d 152 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8457, 83biimtrid 242 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐴 ∈ On) → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8584expimpd 453 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8685com12 32 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
87863ad2antl1 1186 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8836, 56, 873jaod 1431 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ((𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8926, 88biimtrid 242 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9089impr 454 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
91 simpl1 1192 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐴 ∈ On)
92 simprr 772 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝑥 ∈ On)
93 omcl 8548 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On)
9491, 92, 93syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ∈ On)
95 simpl2 1193 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐵 ∈ On)
96 ontri1 6386 . . . . . . . . . . . 12 (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9794, 95, 96syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9890, 97mpbird 257 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ⊆ 𝐵)
99 oawordex 8569 . . . . . . . . . . 11 (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10094, 95, 99syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10198, 100mpbid 232 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
1021013adantr1 1170 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
103 simp3r 1203 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
104 simp21 1207 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ (𝐴 ·o suc 𝑥))
105 simp11 1204 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐴 ∈ On)
106 simp23 1209 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑥 ∈ On)
107 omsuc 8538 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
108105, 106, 107syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
109104, 108eleqtrd 2836 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ ((𝐴 ·o 𝑥) +o 𝐴))
110103, 109eqeltrd 2834 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))
111 simp3l 1202 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦 ∈ On)
112105, 106, 93syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o 𝑥) ∈ On)
113 oaord 8559 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
114111, 105, 112, 113syl3anc 1373 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
115110, 114mpbird 257 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦𝐴)
116115, 103jca 511 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
1171163expia 1121 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → (𝑦𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
118117reximdv2 3150 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
119102, 118mpd 15 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
120119expcom 413 . . . . . 6 ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
1211203expia 1121 . . . . 5 ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
122121com13 88 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ On → ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
123122reximdvai 3151 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
12422, 123syl5 34 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
12518, 124mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308   ciun 4967  Ord word 6351  Oncon0 6352  Lim wlim 6353  suc csuc 6354  (class class class)co 7405   +o coa 8477   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485
This theorem is referenced by:  omeu  8597  dflim5  43353
  Copyright terms: Public domain W3C validator