MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem1 Structured version   Visualization version   GIF version

Theorem omeulem1 8413
Description: Lemma for omeu 8416: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeulem1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem omeulem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
2 sucelon 7664 . . . . . 6 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 217 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ∈ On)
4 simp1 1135 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 on0eln0 6321 . . . . . . 7 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
65biimpar 478 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
763adant2 1130 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
8 omword2 8405 . . . . 5 (((suc 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵))
93, 4, 7, 8syl21anc 835 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵))
10 sucidg 6344 . . . . 5 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
11 ssel 3914 . . . . 5 (suc 𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ suc 𝐵𝐵 ∈ (𝐴 ·o suc 𝐵)))
1210, 11syl5 34 . . . 4 (suc 𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ·o suc 𝐵)))
139, 1, 12sylc 65 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ (𝐴 ·o suc 𝐵))
14 suceq 6331 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1514oveq2d 7291 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝐵))
1615eleq2d 2824 . . . 4 (𝑥 = 𝐵 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝐵)))
1716rspcev 3561 . . 3 ((𝐵 ∈ On ∧ 𝐵 ∈ (𝐴 ·o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥))
181, 13, 17syl2anc 584 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥))
19 suceq 6331 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2019oveq2d 7291 . . . . 5 (𝑥 = 𝑧 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝑧))
2120eleq2d 2824 . . . 4 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
2221onminex 7652 . . 3 (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
23 vex 3436 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2423elon 6275 . . . . . . . . . . . . . 14 (𝑥 ∈ On ↔ Ord 𝑥)
25 ordzsl 7692 . . . . . . . . . . . . . 14 (Ord 𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
2624, 25bitri 274 . . . . . . . . . . . . 13 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
27 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
28 om0 8347 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2927, 28sylan9eqr 2800 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 = ∅) → (𝐴 ·o 𝑥) = ∅)
30 ne0i 4268 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (𝐴 ·o 𝑥) → (𝐴 ·o 𝑥) ≠ ∅)
3130necon2bi 2974 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·o 𝑥) = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
3229, 31syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑥 = ∅) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
3332ex 413 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
3433a1d 25 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))))
35343ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))))
3635imp 407 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
37 simp3 1137 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → 𝑥 = suc 𝑤)
38 simp2 1136 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧))
39 raleq 3342 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)))
40 vex 3436 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
4140sucid 6345 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ suc 𝑤
42 suceq 6331 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤)
4342oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑤 → (𝐴 ·o suc 𝑧) = (𝐴 ·o suc 𝑤))
4443eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑤 → (𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4544notbid 318 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4645rspcv 3557 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ suc 𝑤 → (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4741, 46ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))
4839, 47syl6bi 252 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
4937, 38, 48sylc 65 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))
50 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = suc 𝑤 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑤))
5150eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
5251notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o 𝑥) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)))
5352biimpar 478 . . . . . . . . . . . . . . . . 17 ((𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
5437, 49, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
55543expia 1120 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
5655rexlimdvw 3219 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (∃𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
57 ralnex 3167 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))
58 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝐴 ∈ On)
5923a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝑥 ∈ V)
60 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → Lim 𝑥)
61 omlim 8363 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑧𝑥 (𝐴 ·o 𝑧))
6258, 59, 60, 61syl12anc 834 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ·o 𝑥) = 𝑧𝑥 (𝐴 ·o 𝑧))
6362eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 𝑧𝑥 (𝐴 ·o 𝑧)))
64 eliun 4928 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 𝑧𝑥 (𝐴 ·o 𝑧) ↔ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o 𝑧))
65 limord 6325 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑥 → Ord 𝑥)
66653ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → Ord 𝑥)
6766, 24sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑥 ∈ On)
68 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧𝑥)
69 onelon 6291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
7067, 68, 69syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
71 suceloni 7659 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → suc 𝑧 ∈ On)
7270, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → suc 𝑧 ∈ On)
73 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝐴 ∈ On)
74 sssucid 6343 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 ⊆ suc 𝑧
75 omwordi 8402 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ suc 𝑧 → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧)))
7674, 75mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))
7770, 72, 73, 76syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))
7877sseld 3920 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧)))
79783expia 1120 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → (𝑧𝑥 → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧))))
8079reximdvai 3200 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (∃𝑧𝑥 𝐵 ∈ (𝐴 ·o 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8164, 80syl5bi 241 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 𝑧𝑥 (𝐴 ·o 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8263, 81sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)))
8382con3d 152 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8457, 83syl5bi 241 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐴 ∈ On) → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8584expimpd 454 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8685com12 32 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
87863ad2antl1 1184 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8836, 56, 873jaod 1427 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ((𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
8926, 88syl5bi 241 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9089impr 455 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))
91 simpl1 1190 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐴 ∈ On)
92 simprr 770 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝑥 ∈ On)
93 omcl 8366 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On)
9491, 92, 93syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ∈ On)
95 simpl2 1191 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐵 ∈ On)
96 ontri1 6300 . . . . . . . . . . . 12 (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9794, 95, 96syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))
9890, 97mpbird 256 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ⊆ 𝐵)
99 oawordex 8388 . . . . . . . . . . 11 (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10094, 95, 99syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10198, 100mpbid 231 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
1021013adantr1 1168 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
103 simp3r 1201 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
104 simp21 1205 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ (𝐴 ·o suc 𝑥))
105 simp11 1202 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐴 ∈ On)
106 simp23 1207 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑥 ∈ On)
107 omsuc 8356 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
108105, 106, 107syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
109104, 108eleqtrd 2841 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ ((𝐴 ·o 𝑥) +o 𝐴))
110103, 109eqeltrd 2839 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))
111 simp3l 1200 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦 ∈ On)
112105, 106, 93syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o 𝑥) ∈ On)
113 oaord 8378 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
114111, 105, 112, 113syl3anc 1370 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
115110, 114mpbird 256 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦𝐴)
116115, 103jca 512 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
1171163expia 1120 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → (𝑦𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
118117reximdv2 3199 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
119102, 118mpd 15 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
120119expcom 414 . . . . . 6 ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
1211203expia 1120 . . . . 5 ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
122121com13 88 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ On → ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)))
123122reximdvai 3200 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
12422, 123syl5 34 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
12518, 124mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256   ciun 4924  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268  (class class class)co 7275   +o coa 8294   ·o comu 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302
This theorem is referenced by:  omeu  8416
  Copyright terms: Public domain W3C validator