| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1137 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On) |
| 2 | | onsucb 7811 |
. . . . . 6
⊢ (𝐵 ∈ On ↔ suc 𝐵 ∈ On) |
| 3 | 1, 2 | sylib 218 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ∈ On) |
| 4 | | simp1 1136 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On) |
| 5 | | on0eln0 6409 |
. . . . . . 7
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 6 | 5 | biimpar 477 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅
∈ 𝐴) |
| 7 | 6 | 3adant2 1131 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∅
∈ 𝐴) |
| 8 | | omword2 8586 |
. . . . 5
⊢ (((suc
𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵)) |
| 9 | 3, 4, 7, 8 | syl21anc 837 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ⊆ (𝐴 ·o suc 𝐵)) |
| 10 | | sucidg 6435 |
. . . . 5
⊢ (𝐵 ∈ On → 𝐵 ∈ suc 𝐵) |
| 11 | | ssel 3952 |
. . . . 5
⊢ (suc
𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ suc 𝐵 → 𝐵 ∈ (𝐴 ·o suc 𝐵))) |
| 12 | 10, 11 | syl5 34 |
. . . 4
⊢ (suc
𝐵 ⊆ (𝐴 ·o suc 𝐵) → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ·o suc 𝐵))) |
| 13 | 9, 1, 12 | sylc 65 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ (𝐴 ·o suc 𝐵)) |
| 14 | | suceq 6419 |
. . . . . 6
⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) |
| 15 | 14 | oveq2d 7421 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝐵)) |
| 16 | 15 | eleq2d 2820 |
. . . 4
⊢ (𝑥 = 𝐵 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝐵))) |
| 17 | 16 | rspcev 3601 |
. . 3
⊢ ((𝐵 ∈ On ∧ 𝐵 ∈ (𝐴 ·o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥)) |
| 18 | 1, 13, 17 | syl2anc 584 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥)) |
| 19 | | suceq 6419 |
. . . . . 6
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) |
| 20 | 19 | oveq2d 7421 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝐴 ·o suc 𝑥) = (𝐴 ·o suc 𝑧)) |
| 21 | 20 | eleq2d 2820 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝐵 ∈ (𝐴 ·o suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
| 22 | 21 | onminex 7796 |
. . 3
⊢
(∃𝑥 ∈ On
𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
| 23 | | vex 3463 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 24 | 23 | elon 6361 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 25 | | ordzsl 7840 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥)) |
| 26 | 24, 25 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥)) |
| 27 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o
∅)) |
| 28 | | om0 8529 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ On → (𝐴 ·o ∅) =
∅) |
| 29 | 27, 28 | sylan9eqr 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝑥 = ∅) → (𝐴 ·o 𝑥) = ∅) |
| 30 | | ne0i 4316 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ (𝐴 ·o 𝑥) → (𝐴 ·o 𝑥) ≠ ∅) |
| 31 | 30 | necon2bi 2962 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ·o 𝑥) = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
| 32 | 29, 31 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ On ∧ 𝑥 = ∅) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
| 33 | 32 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 34 | 33 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))) |
| 35 | 34 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)))) |
| 36 | 35 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 37 | | simp3 1138 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → 𝑥 = suc 𝑤) |
| 38 | | simp2 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) |
| 39 | | raleq 3302 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = suc 𝑤 → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
| 40 | | vex 3463 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑤 ∈ V |
| 41 | 40 | sucid 6436 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑤 ∈ suc 𝑤 |
| 42 | | suceq 6419 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤) |
| 43 | 42 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = 𝑤 → (𝐴 ·o suc 𝑧) = (𝐴 ·o suc 𝑤)) |
| 44 | 43 | eleq2d 2820 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑤 → (𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
| 45 | 44 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
| 46 | 45 | rspcv 3597 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ suc 𝑤 → (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
| 47 | 41, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑧 ∈
suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) |
| 48 | 39, 47 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = suc 𝑤 → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
| 49 | 37, 38, 48 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) |
| 50 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = suc 𝑤 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑤)) |
| 51 | 50 | eleq2d 2820 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = suc 𝑤 → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
| 52 | 51 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = suc 𝑤 → (¬ 𝐵 ∈ (𝐴 ·o 𝑥) ↔ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤))) |
| 53 | 52 | biimpar 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ (𝐴 ·o suc 𝑤)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
| 54 | 37, 49, 53 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
| 55 | 54 | 3expia 1121 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 56 | 55 | rexlimdvw 3146 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (∃𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 57 | | ralnex 3062 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ∈
𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ↔ ¬ ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧)) |
| 58 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → 𝐴 ∈ On) |
| 59 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → 𝑥 ∈ V) |
| 60 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → Lim 𝑥) |
| 61 | | omlim 8545 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = ∪ 𝑧 ∈ 𝑥 (𝐴 ·o 𝑧)) |
| 62 | 58, 59, 60, 61 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑥) = ∪ 𝑧 ∈ 𝑥 (𝐴 ·o 𝑧)) |
| 63 | 62 | eleq2d 2820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) ↔ 𝐵 ∈ ∪
𝑧 ∈ 𝑥 (𝐴 ·o 𝑧))) |
| 64 | | eliun 4971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ ∪ 𝑧 ∈ 𝑥 (𝐴 ·o 𝑧) ↔ ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o 𝑧)) |
| 65 | | limord 6413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Lim
𝑥 → Ord 𝑥) |
| 66 | 65 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → Ord 𝑥) |
| 67 | 66, 24 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ On) |
| 68 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑥) |
| 69 | | onelon 6377 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ On) |
| 70 | 67, 68, 69 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ On) |
| 71 | | onsuc 7805 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ On → suc 𝑧 ∈ On) |
| 72 | 70, 71 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → suc 𝑧 ∈ On) |
| 73 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝐴 ∈ On) |
| 74 | | sssucid 6434 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑧 ⊆ suc 𝑧 |
| 75 | | omwordi 8583 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ suc 𝑧 → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧))) |
| 76 | 74, 75 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧)) |
| 77 | 70, 72, 73, 76 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o suc 𝑧)) |
| 78 | 77 | sseld 3957 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥) → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
| 79 | 78 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝑧 ∈ 𝑥 → (𝐵 ∈ (𝐴 ·o 𝑧) → 𝐵 ∈ (𝐴 ·o suc 𝑧)))) |
| 80 | 79 | reximdvai 3151 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o 𝑧) → ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
| 81 | 64, 80 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐵 ∈ ∪
𝑧 ∈ 𝑥 (𝐴 ·o 𝑧) → ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
| 82 | 63, 81 | sylbid 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·o 𝑥) → ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧))) |
| 83 | 82 | con3d 152 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (¬ ∃𝑧 ∈ 𝑥 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 84 | 57, 83 | biimtrid 242 |
. . . . . . . . . . . . . . . . 17
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 85 | 84 | expimpd 453 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 86 | 85 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 87 | 86 | 3ad2antl1 1186 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 88 | 36, 56, 87 | 3jaod 1431 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ((𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 89 | 26, 88 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 90 | 89 | impr 454 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ·o 𝑥)) |
| 91 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐴 ∈ On) |
| 92 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝑥 ∈ On) |
| 93 | | omcl 8548 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
| 94 | 91, 92, 93 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ∈ On) |
| 95 | | simpl2 1193 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐵 ∈ On) |
| 96 | | ontri1 6386 |
. . . . . . . . . . . 12
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 97 | 94, 95, 96 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·o 𝑥))) |
| 98 | 90, 97 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·o 𝑥) ⊆ 𝐵) |
| 99 | | oawordex 8569 |
. . . . . . . . . . 11
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
| 100 | 94, 95, 99 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
| 101 | 98, 100 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧
(∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
| 102 | 101 | 3adantr1 1170 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
| 103 | | simp3r 1203 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
| 104 | | simp21 1207 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ (𝐴 ·o suc 𝑥)) |
| 105 | | simp11 1204 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐴 ∈ On) |
| 106 | | simp23 1209 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑥 ∈ On) |
| 107 | | omsuc 8538 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
| 108 | 105, 106,
107 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
| 109 | 104, 108 | eleqtrd 2836 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝐵 ∈ ((𝐴 ·o 𝑥) +o 𝐴)) |
| 110 | 103, 109 | eqeltrd 2834 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)) |
| 111 | | simp3l 1202 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦 ∈ On) |
| 112 | 105, 106,
93 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝐴 ·o 𝑥) ∈ On) |
| 113 | | oaord 8559 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (𝑦 ∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))) |
| 114 | 111, 105,
112, 113 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦 ∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))) |
| 115 | 110, 114 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → 𝑦 ∈ 𝐴) |
| 116 | 115, 103 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (𝑦 ∈ 𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
| 117 | 116 | 3expia 1121 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝑦 ∈ On ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → (𝑦 ∈ 𝐴 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) |
| 118 | 117 | reximdv2 3150 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → (∃𝑦 ∈ On ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
| 119 | 102, 118 | mpd 15 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |
| 120 | 119 | expcom 413 |
. . . . . 6
⊢ ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧) ∧ 𝑥 ∈ On) → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
| 121 | 120 | 3expia 1121 |
. . . . 5
⊢ ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → (𝑥 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) |
| 122 | 121 | com13 88 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ On → ((𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) |
| 123 | 122 | reximdvai 3151 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·o suc 𝑥) ∧ ∀𝑧 ∈ 𝑥 ¬ 𝐵 ∈ (𝐴 ·o suc 𝑧)) → ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
| 124 | 22, 123 | syl5 34 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·o suc 𝑥) → ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) |
| 125 | 18, 124 | mpd 15 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ On
∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) |