Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3-rN Structured version   Visualization version   GIF version

Theorem erngdvlem3-rN 41001
Description: Lemma for eringring 40995. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHyp‘𝐾)
ernggrp.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
ernggrplem.b-r 𝐵 = (Base‘𝐾)
ernggrplem.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
ernggrplem.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
ernggrplem.p-r 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
ernggrplem.o-r 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
ernggrplem.i-r 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m-r 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
Assertion
Ref Expression
erngdvlem3-rN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   𝑀(𝑓,𝑎,𝑏)   𝑂(𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem3-rN
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 ernggrplem.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 ernggrplem.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
5 eqid 2736 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase-rN 40812 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2742 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 ernggrplem.p-r . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
9 eqid 2736 . . . 4 (+g𝐷) = (+g𝐷)
101, 2, 3, 4, 9erngfplus-rN 40813 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
118, 10eqtr4id 2795 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
12 erngrnglem.m-r . . 3 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
13 eqid 2736 . . . 4 (.r𝐷) = (.r𝐷)
141, 2, 3, 4, 13erngfmul-rN 40816 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎)))
1512, 14eqtr4id 2795 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (.r𝐷))
16 ernggrplem.b-r . . 3 𝐵 = (Base‘𝐾)
17 ernggrplem.o-r . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
18 ernggrplem.i-r . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
191, 4, 16, 2, 3, 8, 17, 18erngdvlem1-rN 40999 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
2015oveqd 7449 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
21203ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
221, 2, 3, 4, 13erngmul-rN 40817 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
23223impb 1114 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
2421, 23eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) = (𝑡𝑠))
251, 3tendococl 40775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
26253com23 1126 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑡𝑠) ∈ 𝐸)
2724, 26eqeltrd 2840 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) ∈ 𝐸)
2815oveqdr 7460 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) = (𝑡(.r𝐷)𝑢))
291, 2, 3, 4, 13erngmul-rN 40817 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑢𝑡))
30293adantr1 1169 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑢𝑡))
3128, 30eqtrd 2776 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) = (𝑢𝑡))
3231coeq1d 5871 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑡𝑀𝑢) ∘ 𝑠) = ((𝑢𝑡) ∘ 𝑠))
3315oveqd 7449 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀(𝑡𝑀𝑢)) = (𝑠(.r𝐷)(𝑡𝑀𝑢)))
3433adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑀𝑢)) = (𝑠(.r𝐷)(𝑡𝑀𝑢)))
35 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
36 simpr1 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑠𝐸)
37 simpr3 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑢𝐸)
38 simpr2 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑡𝐸)
391, 3tendococl 40775 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸𝑡𝐸) → (𝑢𝑡) ∈ 𝐸)
4035, 37, 38, 39syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢𝑡) ∈ 𝐸)
4131, 40eqeltrd 2840 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) ∈ 𝐸)
421, 2, 3, 4, 13erngmul-rN 40817 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑀𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4335, 36, 41, 42syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4434, 43eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4515oveqd 7449 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑠𝑀𝑡)(.r𝐷)𝑢))
4645adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑠𝑀𝑡)(.r𝐷)𝑢))
47273adant3r3 1184 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) ∈ 𝐸)
481, 2, 3, 4, 13erngmul-rN 40817 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑀𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑀𝑡)))
4935, 47, 37, 48syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑀𝑡)))
5015oveqdr 7460 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
51223adantr3 1171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
5250, 51eqtrd 2776 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) = (𝑡𝑠))
5352coeq2d 5872 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢 ∘ (𝑠𝑀𝑡)) = (𝑢 ∘ (𝑡𝑠)))
5446, 49, 533eqtrd 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = (𝑢 ∘ (𝑡𝑠)))
55 coass 6284 . . . 4 ((𝑢𝑡) ∘ 𝑠) = (𝑢 ∘ (𝑡𝑠))
5654, 55eqtr4di 2794 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑢𝑡) ∘ 𝑠))
5732, 44, 563eqtr4rd 2787 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = (𝑠𝑀(𝑡𝑀𝑢)))
581, 2, 3, 8tendodi2 40788 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸𝑠𝐸)) → ((𝑡𝑃𝑢) ∘ 𝑠) = ((𝑡𝑠)𝑃(𝑢𝑠)))
5935, 38, 37, 36, 58syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑡𝑃𝑢) ∘ 𝑠) = ((𝑡𝑠)𝑃(𝑢𝑠)))
6015oveqd 7449 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀(𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
6160adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
621, 2, 3, 8tendoplcl 40784 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑃𝑢) ∈ 𝐸)
6335, 38, 37, 62syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑃𝑢) ∈ 𝐸)
641, 2, 3, 4, 13erngmul-rN 40817 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑃𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6535, 36, 63, 64syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6661, 65eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6715oveqdr 7460 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑢) = (𝑠(.r𝐷)𝑢))
681, 2, 3, 4, 13erngmul-rN 40817 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑢𝑠))
69683adantr2 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑢𝑠))
7067, 69eqtrd 2776 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑢) = (𝑢𝑠))
7152, 70oveq12d 7450 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑃(𝑠𝑀𝑢)) = ((𝑡𝑠)𝑃(𝑢𝑠)))
7259, 66, 713eqtr4d 2786 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = ((𝑠𝑀𝑡)𝑃(𝑠𝑀𝑢)))
731, 2, 3, 8tendodi1 40787 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐸𝑠𝐸𝑡𝐸)) → (𝑢 ∘ (𝑠𝑃𝑡)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
7435, 37, 36, 38, 73syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢 ∘ (𝑠𝑃𝑡)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
7515adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑀 = (.r𝐷))
7675oveqd 7449 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
771, 2, 3, 8tendoplcl 40784 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) ∈ 𝐸)
78773adant3r3 1184 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑃𝑡) ∈ 𝐸)
791, 2, 3, 4, 13erngmul-rN 40817 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑃𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8035, 78, 37, 79syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8176, 80eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8270, 31oveq12d 7450 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑢)𝑃(𝑡𝑀𝑢)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
8374, 81, 823eqtr4d 2786 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = ((𝑠𝑀𝑢)𝑃(𝑡𝑀𝑢)))
841, 2, 3tendoidcl 40772 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
8515oveqd 7449 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇)𝑀𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
8685adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)𝑀𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
87 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8884adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
89 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → 𝑠𝐸)
901, 2, 3, 4, 13erngmul-rN 40817 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (𝑠 ∘ ( I ↾ 𝑇)))
9187, 88, 89, 90syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (𝑠 ∘ ( I ↾ 𝑇)))
921, 2, 3tendo1mulr 40774 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 ∘ ( I ↾ 𝑇)) = 𝑠)
9386, 91, 923eqtrd 2780 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)𝑀𝑠) = 𝑠)
9415oveqd 7449 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
9594adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠𝑀( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
961, 2, 3, 4, 13erngmul-rN 40817 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑠))
9787, 89, 88, 96syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑠))
981, 2, 3tendo1mul 40773 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) ∘ 𝑠) = 𝑠)
9995, 97, 983eqtrd 2780 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠𝑀( I ↾ 𝑇)) = 𝑠)
1007, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99isringd 20289 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cmpt 5224   I cid 5576  ccnv 5683  cres 5686  ccom 5688  cfv 6560  (class class class)co 7432  cmpo 7434  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Ringcrg 20231  HLchlt 39352  LHypclh 39987  LTrncltrn 40104  TEndoctendo 40755  EDRingRcedring-rN 40757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-undef 8299  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-0g 17487  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-mgp 20139  df-ring 20233  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-tendo 40758  df-edring-rN 40759
This theorem is referenced by:  erngdvlem4-rN  41002  erngring-rN  41003
  Copyright terms: Public domain W3C validator