Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3-rN Structured version   Visualization version   GIF version

Theorem erngdvlem3-rN 40955
Description: Lemma for eringring 40949. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHyp‘𝐾)
ernggrp.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
ernggrplem.b-r 𝐵 = (Base‘𝐾)
ernggrplem.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
ernggrplem.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
ernggrplem.p-r 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
ernggrplem.o-r 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
ernggrplem.i-r 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m-r 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
Assertion
Ref Expression
erngdvlem3-rN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   𝑀(𝑓,𝑎,𝑏)   𝑂(𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem3-rN
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 ernggrplem.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 ernggrplem.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
5 eqid 2740 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase-rN 40766 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2746 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 ernggrplem.p-r . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
9 eqid 2740 . . . 4 (+g𝐷) = (+g𝐷)
101, 2, 3, 4, 9erngfplus-rN 40767 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
118, 10eqtr4id 2799 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
12 erngrnglem.m-r . . 3 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
13 eqid 2740 . . . 4 (.r𝐷) = (.r𝐷)
141, 2, 3, 4, 13erngfmul-rN 40770 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎)))
1512, 14eqtr4id 2799 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (.r𝐷))
16 ernggrplem.b-r . . 3 𝐵 = (Base‘𝐾)
17 ernggrplem.o-r . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
18 ernggrplem.i-r . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
191, 4, 16, 2, 3, 8, 17, 18erngdvlem1-rN 40953 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
2015oveqd 7465 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
21203ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
221, 2, 3, 4, 13erngmul-rN 40771 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
23223impb 1115 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
2421, 23eqtrd 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) = (𝑡𝑠))
251, 3tendococl 40729 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
26253com23 1126 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑡𝑠) ∈ 𝐸)
2724, 26eqeltrd 2844 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) ∈ 𝐸)
2815oveqdr 7476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) = (𝑡(.r𝐷)𝑢))
291, 2, 3, 4, 13erngmul-rN 40771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑢𝑡))
30293adantr1 1169 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑢𝑡))
3128, 30eqtrd 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) = (𝑢𝑡))
3231coeq1d 5886 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑡𝑀𝑢) ∘ 𝑠) = ((𝑢𝑡) ∘ 𝑠))
3315oveqd 7465 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀(𝑡𝑀𝑢)) = (𝑠(.r𝐷)(𝑡𝑀𝑢)))
3433adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑀𝑢)) = (𝑠(.r𝐷)(𝑡𝑀𝑢)))
35 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
36 simpr1 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑠𝐸)
37 simpr3 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑢𝐸)
38 simpr2 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑡𝐸)
391, 3tendococl 40729 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸𝑡𝐸) → (𝑢𝑡) ∈ 𝐸)
4035, 37, 38, 39syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢𝑡) ∈ 𝐸)
4131, 40eqeltrd 2844 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) ∈ 𝐸)
421, 2, 3, 4, 13erngmul-rN 40771 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑀𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4335, 36, 41, 42syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4434, 43eqtrd 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4515oveqd 7465 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑠𝑀𝑡)(.r𝐷)𝑢))
4645adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑠𝑀𝑡)(.r𝐷)𝑢))
47273adant3r3 1184 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) ∈ 𝐸)
481, 2, 3, 4, 13erngmul-rN 40771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑀𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑀𝑡)))
4935, 47, 37, 48syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑀𝑡)))
5015oveqdr 7476 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
51223adantr3 1171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
5250, 51eqtrd 2780 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) = (𝑡𝑠))
5352coeq2d 5887 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢 ∘ (𝑠𝑀𝑡)) = (𝑢 ∘ (𝑡𝑠)))
5446, 49, 533eqtrd 2784 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = (𝑢 ∘ (𝑡𝑠)))
55 coass 6296 . . . 4 ((𝑢𝑡) ∘ 𝑠) = (𝑢 ∘ (𝑡𝑠))
5654, 55eqtr4di 2798 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑢𝑡) ∘ 𝑠))
5732, 44, 563eqtr4rd 2791 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = (𝑠𝑀(𝑡𝑀𝑢)))
581, 2, 3, 8tendodi2 40742 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸𝑠𝐸)) → ((𝑡𝑃𝑢) ∘ 𝑠) = ((𝑡𝑠)𝑃(𝑢𝑠)))
5935, 38, 37, 36, 58syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑡𝑃𝑢) ∘ 𝑠) = ((𝑡𝑠)𝑃(𝑢𝑠)))
6015oveqd 7465 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀(𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
6160adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
621, 2, 3, 8tendoplcl 40738 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑃𝑢) ∈ 𝐸)
6335, 38, 37, 62syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑃𝑢) ∈ 𝐸)
641, 2, 3, 4, 13erngmul-rN 40771 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑃𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6535, 36, 63, 64syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6661, 65eqtrd 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6715oveqdr 7476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑢) = (𝑠(.r𝐷)𝑢))
681, 2, 3, 4, 13erngmul-rN 40771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑢𝑠))
69683adantr2 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑢𝑠))
7067, 69eqtrd 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑢) = (𝑢𝑠))
7152, 70oveq12d 7466 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑃(𝑠𝑀𝑢)) = ((𝑡𝑠)𝑃(𝑢𝑠)))
7259, 66, 713eqtr4d 2790 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = ((𝑠𝑀𝑡)𝑃(𝑠𝑀𝑢)))
731, 2, 3, 8tendodi1 40741 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐸𝑠𝐸𝑡𝐸)) → (𝑢 ∘ (𝑠𝑃𝑡)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
7435, 37, 36, 38, 73syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢 ∘ (𝑠𝑃𝑡)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
7515adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑀 = (.r𝐷))
7675oveqd 7465 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
771, 2, 3, 8tendoplcl 40738 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) ∈ 𝐸)
78773adant3r3 1184 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑃𝑡) ∈ 𝐸)
791, 2, 3, 4, 13erngmul-rN 40771 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑃𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8035, 78, 37, 79syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8176, 80eqtrd 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8270, 31oveq12d 7466 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑢)𝑃(𝑡𝑀𝑢)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
8374, 81, 823eqtr4d 2790 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = ((𝑠𝑀𝑢)𝑃(𝑡𝑀𝑢)))
841, 2, 3tendoidcl 40726 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
8515oveqd 7465 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇)𝑀𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
8685adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)𝑀𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
87 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8884adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
89 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → 𝑠𝐸)
901, 2, 3, 4, 13erngmul-rN 40771 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (𝑠 ∘ ( I ↾ 𝑇)))
9187, 88, 89, 90syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (𝑠 ∘ ( I ↾ 𝑇)))
921, 2, 3tendo1mulr 40728 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 ∘ ( I ↾ 𝑇)) = 𝑠)
9386, 91, 923eqtrd 2784 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)𝑀𝑠) = 𝑠)
9415oveqd 7465 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
9594adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠𝑀( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
961, 2, 3, 4, 13erngmul-rN 40771 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑠))
9787, 89, 88, 96syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑠))
981, 2, 3tendo1mul 40727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) ∘ 𝑠) = 𝑠)
9995, 97, 983eqtrd 2784 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠𝑀( I ↾ 𝑇)) = 𝑠)
1007, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99isringd 20314 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cmpt 5249   I cid 5592  ccnv 5699  cres 5702  ccom 5704  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Ringcrg 20260  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709  EDRingRcedring-rN 40711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-mgp 20162  df-ring 20262  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712  df-edring-rN 40713
This theorem is referenced by:  erngdvlem4-rN  40956  erngring-rN  40957
  Copyright terms: Public domain W3C validator