Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3-rN Structured version   Visualization version   GIF version

Theorem erngdvlem3-rN 40981
Description: Lemma for eringring 40975. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHyp‘𝐾)
ernggrp.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
ernggrplem.b-r 𝐵 = (Base‘𝐾)
ernggrplem.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
ernggrplem.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
ernggrplem.p-r 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
ernggrplem.o-r 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
ernggrplem.i-r 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m-r 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
Assertion
Ref Expression
erngdvlem3-rN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   𝑀(𝑓,𝑎,𝑏)   𝑂(𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem3-rN
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 ernggrplem.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 ernggrplem.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
5 eqid 2735 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase-rN 40792 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2741 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 ernggrplem.p-r . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
9 eqid 2735 . . . 4 (+g𝐷) = (+g𝐷)
101, 2, 3, 4, 9erngfplus-rN 40793 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
118, 10eqtr4id 2794 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
12 erngrnglem.m-r . . 3 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
13 eqid 2735 . . . 4 (.r𝐷) = (.r𝐷)
141, 2, 3, 4, 13erngfmul-rN 40796 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎)))
1512, 14eqtr4id 2794 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (.r𝐷))
16 ernggrplem.b-r . . 3 𝐵 = (Base‘𝐾)
17 ernggrplem.o-r . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
18 ernggrplem.i-r . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
191, 4, 16, 2, 3, 8, 17, 18erngdvlem1-rN 40979 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
2015oveqd 7448 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
21203ad2ant1 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
221, 2, 3, 4, 13erngmul-rN 40797 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
23223impb 1114 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
2421, 23eqtrd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) = (𝑡𝑠))
251, 3tendococl 40755 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
26253com23 1125 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑡𝑠) ∈ 𝐸)
2724, 26eqeltrd 2839 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑀𝑡) ∈ 𝐸)
2815oveqdr 7459 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) = (𝑡(.r𝐷)𝑢))
291, 2, 3, 4, 13erngmul-rN 40797 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑢𝑡))
30293adantr1 1168 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑢𝑡))
3128, 30eqtrd 2775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) = (𝑢𝑡))
3231coeq1d 5875 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑡𝑀𝑢) ∘ 𝑠) = ((𝑢𝑡) ∘ 𝑠))
3315oveqd 7448 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀(𝑡𝑀𝑢)) = (𝑠(.r𝐷)(𝑡𝑀𝑢)))
3433adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑀𝑢)) = (𝑠(.r𝐷)(𝑡𝑀𝑢)))
35 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
36 simpr1 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑠𝐸)
37 simpr3 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑢𝐸)
38 simpr2 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑡𝐸)
391, 3tendococl 40755 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸𝑡𝐸) → (𝑢𝑡) ∈ 𝐸)
4035, 37, 38, 39syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢𝑡) ∈ 𝐸)
4131, 40eqeltrd 2839 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑀𝑢) ∈ 𝐸)
421, 2, 3, 4, 13erngmul-rN 40797 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑀𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4335, 36, 41, 42syl12anc 837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4434, 43eqtrd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑀𝑢)) = ((𝑡𝑀𝑢) ∘ 𝑠))
4515oveqd 7448 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑠𝑀𝑡)(.r𝐷)𝑢))
4645adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑠𝑀𝑡)(.r𝐷)𝑢))
47273adant3r3 1183 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) ∈ 𝐸)
481, 2, 3, 4, 13erngmul-rN 40797 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑀𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑀𝑡)))
4935, 47, 37, 48syl12anc 837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑀𝑡)))
5015oveqdr 7459 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
51223adantr3 1170 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
5250, 51eqtrd 2775 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑡) = (𝑡𝑠))
5352coeq2d 5876 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢 ∘ (𝑠𝑀𝑡)) = (𝑢 ∘ (𝑡𝑠)))
5446, 49, 533eqtrd 2779 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = (𝑢 ∘ (𝑡𝑠)))
55 coass 6287 . . . 4 ((𝑢𝑡) ∘ 𝑠) = (𝑢 ∘ (𝑡𝑠))
5654, 55eqtr4di 2793 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = ((𝑢𝑡) ∘ 𝑠))
5732, 44, 563eqtr4rd 2786 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑀𝑢) = (𝑠𝑀(𝑡𝑀𝑢)))
581, 2, 3, 8tendodi2 40768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸𝑠𝐸)) → ((𝑡𝑃𝑢) ∘ 𝑠) = ((𝑡𝑠)𝑃(𝑢𝑠)))
5935, 38, 37, 36, 58syl13anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑡𝑃𝑢) ∘ 𝑠) = ((𝑡𝑠)𝑃(𝑢𝑠)))
6015oveqd 7448 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀(𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
6160adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
621, 2, 3, 8tendoplcl 40764 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑃𝑢) ∈ 𝐸)
6335, 38, 37, 62syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑃𝑢) ∈ 𝐸)
641, 2, 3, 4, 13erngmul-rN 40797 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑃𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6535, 36, 63, 64syl12anc 837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6661, 65eqtrd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = ((𝑡𝑃𝑢) ∘ 𝑠))
6715oveqdr 7459 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑢) = (𝑠(.r𝐷)𝑢))
681, 2, 3, 4, 13erngmul-rN 40797 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑢𝑠))
69683adantr2 1169 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑢𝑠))
7067, 69eqtrd 2775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀𝑢) = (𝑢𝑠))
7152, 70oveq12d 7449 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑡)𝑃(𝑠𝑀𝑢)) = ((𝑡𝑠)𝑃(𝑢𝑠)))
7259, 66, 713eqtr4d 2785 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑀(𝑡𝑃𝑢)) = ((𝑠𝑀𝑡)𝑃(𝑠𝑀𝑢)))
731, 2, 3, 8tendodi1 40767 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐸𝑠𝐸𝑡𝐸)) → (𝑢 ∘ (𝑠𝑃𝑡)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
7435, 37, 36, 38, 73syl13anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑢 ∘ (𝑠𝑃𝑡)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
7515adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑀 = (.r𝐷))
7675oveqd 7448 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
771, 2, 3, 8tendoplcl 40764 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) ∈ 𝐸)
78773adant3r3 1183 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑃𝑡) ∈ 𝐸)
791, 2, 3, 4, 13erngmul-rN 40797 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑃𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8035, 78, 37, 79syl12anc 837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8176, 80eqtrd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = (𝑢 ∘ (𝑠𝑃𝑡)))
8270, 31oveq12d 7449 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑀𝑢)𝑃(𝑡𝑀𝑢)) = ((𝑢𝑠)𝑃(𝑢𝑡)))
8374, 81, 823eqtr4d 2785 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑀𝑢) = ((𝑠𝑀𝑢)𝑃(𝑡𝑀𝑢)))
841, 2, 3tendoidcl 40752 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
8515oveqd 7448 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇)𝑀𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
8685adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)𝑀𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
87 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8884adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
89 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → 𝑠𝐸)
901, 2, 3, 4, 13erngmul-rN 40797 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (𝑠 ∘ ( I ↾ 𝑇)))
9187, 88, 89, 90syl12anc 837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (𝑠 ∘ ( I ↾ 𝑇)))
921, 2, 3tendo1mulr 40754 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 ∘ ( I ↾ 𝑇)) = 𝑠)
9386, 91, 923eqtrd 2779 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)𝑀𝑠) = 𝑠)
9415oveqd 7448 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
9594adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠𝑀( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
961, 2, 3, 4, 13erngmul-rN 40797 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑠))
9787, 89, 88, 96syl12anc 837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑠))
981, 2, 3tendo1mul 40753 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) ∘ 𝑠) = 𝑠)
9995, 97, 983eqtrd 2779 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠𝑀( I ↾ 𝑇)) = 𝑠)
1007, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99isringd 20305 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cmpt 5231   I cid 5582  ccnv 5688  cres 5691  ccom 5693  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Ringcrg 20251  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  TEndoctendo 40735  EDRingRcedring-rN 40737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-0g 17488  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-mgp 20153  df-ring 20253  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738  df-edring-rN 40739
This theorem is referenced by:  erngdvlem4-rN  40982  erngring-rN  40983
  Copyright terms: Public domain W3C validator