Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3-rN Structured version   Visualization version   GIF version

Theorem erngdvlem3-rN 39511
Description: Lemma for eringring 39505. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHypβ€˜πΎ)
ernggrp.d-r 𝐷 = ((EDRingRβ€˜πΎ)β€˜π‘Š)
ernggrplem.b-r 𝐡 = (Baseβ€˜πΎ)
ernggrplem.t-r 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
ernggrplem.e-r 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
ernggrplem.p-r 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“))))
ernggrplem.o-r 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
ernggrplem.i-r 𝐼 = (π‘Ž ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘Žβ€˜π‘“)))
erngrnglem.m-r 𝑀 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑏 ∘ π‘Ž))
Assertion
Ref Expression
erngdvlem3-rN ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Ring)
Distinct variable groups:   𝐡,𝑓   π‘Ž,𝑏,𝐸   𝑓,π‘Ž,𝐾,𝑏   𝑓,𝐻   𝑇,π‘Ž,𝑏,𝑓   π‘Š,π‘Ž,𝑏,𝑓
Allowed substitution hints:   𝐡(π‘Ž,𝑏)   𝐷(𝑓,π‘Ž,𝑏)   𝑃(𝑓,π‘Ž,𝑏)   𝐸(𝑓)   𝐻(π‘Ž,𝑏)   𝐼(𝑓,π‘Ž,𝑏)   𝑀(𝑓,π‘Ž,𝑏)   𝑂(𝑓,π‘Ž,𝑏)

Proof of Theorem erngdvlem3-rN
Dummy variables 𝑑 𝑠 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4 𝐻 = (LHypβ€˜πΎ)
2 ernggrplem.t-r . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 ernggrplem.e-r . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
4 ernggrp.d-r . . . 4 𝐷 = ((EDRingRβ€˜πΎ)β€˜π‘Š)
5 eqid 2733 . . . 4 (Baseβ€˜π·) = (Baseβ€˜π·)
61, 2, 3, 4, 5erngbase-rN 39322 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π·) = 𝐸)
76eqcomd 2739 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐸 = (Baseβ€˜π·))
8 ernggrplem.p-r . . 3 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“))))
9 eqid 2733 . . . 4 (+gβ€˜π·) = (+gβ€˜π·)
101, 2, 3, 4, 9erngfplus-rN 39323 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (+gβ€˜π·) = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“)))))
118, 10eqtr4id 2792 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑃 = (+gβ€˜π·))
12 erngrnglem.m-r . . 3 𝑀 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑏 ∘ π‘Ž))
13 eqid 2733 . . . 4 (.rβ€˜π·) = (.rβ€˜π·)
141, 2, 3, 4, 13erngfmul-rN 39326 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (.rβ€˜π·) = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑏 ∘ π‘Ž)))
1512, 14eqtr4id 2792 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑀 = (.rβ€˜π·))
16 ernggrplem.b-r . . 3 𝐡 = (Baseβ€˜πΎ)
17 ernggrplem.o-r . . 3 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
18 ernggrplem.i-r . . 3 𝐼 = (π‘Ž ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘Žβ€˜π‘“)))
191, 4, 16, 2, 3, 8, 17, 18erngdvlem1-rN 39509 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Grp)
2015oveqd 7378 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠𝑀𝑑) = (𝑠(.rβ€˜π·)𝑑))
21203ad2ant1 1134 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠𝑀𝑑) = (𝑠(.rβ€˜π·)𝑑))
221, 2, 3, 4, 13erngmul-rN 39327 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑑) = (𝑑 ∘ 𝑠))
23223impb 1116 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠(.rβ€˜π·)𝑑) = (𝑑 ∘ 𝑠))
2421, 23eqtrd 2773 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠𝑀𝑑) = (𝑑 ∘ 𝑠))
251, 3tendococl 39285 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑑 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) β†’ (𝑑 ∘ 𝑠) ∈ 𝐸)
26253com23 1127 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑑 ∘ 𝑠) ∈ 𝐸)
2724, 26eqeltrd 2834 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠𝑀𝑑) ∈ 𝐸)
2815oveqdr 7389 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑𝑀𝑒) = (𝑑(.rβ€˜π·)𝑒))
291, 2, 3, 4, 13erngmul-rN 39327 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑(.rβ€˜π·)𝑒) = (𝑒 ∘ 𝑑))
30293adantr1 1170 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑(.rβ€˜π·)𝑒) = (𝑒 ∘ 𝑑))
3128, 30eqtrd 2773 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑𝑀𝑒) = (𝑒 ∘ 𝑑))
3231coeq1d 5821 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑑𝑀𝑒) ∘ 𝑠) = ((𝑒 ∘ 𝑑) ∘ 𝑠))
3315oveqd 7378 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠𝑀(𝑑𝑀𝑒)) = (𝑠(.rβ€˜π·)(𝑑𝑀𝑒)))
3433adantr 482 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀(𝑑𝑀𝑒)) = (𝑠(.rβ€˜π·)(𝑑𝑀𝑒)))
35 simpl 484 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
36 simpr1 1195 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ 𝑠 ∈ 𝐸)
37 simpr3 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ 𝑒 ∈ 𝐸)
38 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ 𝑑 ∈ 𝐸)
391, 3tendococl 39285 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑒 ∘ 𝑑) ∈ 𝐸)
4035, 37, 38, 39syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑒 ∘ 𝑑) ∈ 𝐸)
4131, 40eqeltrd 2834 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑𝑀𝑒) ∈ 𝐸)
421, 2, 3, 4, 13erngmul-rN 39327 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ (𝑑𝑀𝑒) ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑𝑀𝑒)) = ((𝑑𝑀𝑒) ∘ 𝑠))
4335, 36, 41, 42syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑𝑀𝑒)) = ((𝑑𝑀𝑒) ∘ 𝑠))
4434, 43eqtrd 2773 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀(𝑑𝑀𝑒)) = ((𝑑𝑀𝑒) ∘ 𝑠))
4515oveqd 7378 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((𝑠𝑀𝑑)𝑀𝑒) = ((𝑠𝑀𝑑)(.rβ€˜π·)𝑒))
4645adantr 482 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑑)𝑀𝑒) = ((𝑠𝑀𝑑)(.rβ€˜π·)𝑒))
47273adant3r3 1185 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀𝑑) ∈ 𝐸)
481, 2, 3, 4, 13erngmul-rN 39327 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑠𝑀𝑑) ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑑)(.rβ€˜π·)𝑒) = (𝑒 ∘ (𝑠𝑀𝑑)))
4935, 47, 37, 48syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑑)(.rβ€˜π·)𝑒) = (𝑒 ∘ (𝑠𝑀𝑑)))
5015oveqdr 7389 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀𝑑) = (𝑠(.rβ€˜π·)𝑑))
51223adantr3 1172 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑑) = (𝑑 ∘ 𝑠))
5250, 51eqtrd 2773 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀𝑑) = (𝑑 ∘ 𝑠))
5352coeq2d 5822 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑒 ∘ (𝑠𝑀𝑑)) = (𝑒 ∘ (𝑑 ∘ 𝑠)))
5446, 49, 533eqtrd 2777 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑑)𝑀𝑒) = (𝑒 ∘ (𝑑 ∘ 𝑠)))
55 coass 6221 . . . 4 ((𝑒 ∘ 𝑑) ∘ 𝑠) = (𝑒 ∘ (𝑑 ∘ 𝑠))
5654, 55eqtr4di 2791 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑑)𝑀𝑒) = ((𝑒 ∘ 𝑑) ∘ 𝑠))
5732, 44, 563eqtr4rd 2784 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑑)𝑀𝑒) = (𝑠𝑀(𝑑𝑀𝑒)))
581, 2, 3, 8tendodi2 39298 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸)) β†’ ((𝑑𝑃𝑒) ∘ 𝑠) = ((𝑑 ∘ 𝑠)𝑃(𝑒 ∘ 𝑠)))
5935, 38, 37, 36, 58syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑑𝑃𝑒) ∘ 𝑠) = ((𝑑 ∘ 𝑠)𝑃(𝑒 ∘ 𝑠)))
6015oveqd 7378 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠𝑀(𝑑𝑃𝑒)) = (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)))
6160adantr 482 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀(𝑑𝑃𝑒)) = (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)))
621, 2, 3, 8tendoplcl 39294 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸) β†’ (𝑑𝑃𝑒) ∈ 𝐸)
6335, 38, 37, 62syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑𝑃𝑒) ∈ 𝐸)
641, 2, 3, 4, 13erngmul-rN 39327 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ (𝑑𝑃𝑒) ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)) = ((𝑑𝑃𝑒) ∘ 𝑠))
6535, 36, 63, 64syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)) = ((𝑑𝑃𝑒) ∘ 𝑠))
6661, 65eqtrd 2773 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀(𝑑𝑃𝑒)) = ((𝑑𝑃𝑒) ∘ 𝑠))
6715oveqdr 7389 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀𝑒) = (𝑠(.rβ€˜π·)𝑒))
681, 2, 3, 4, 13erngmul-rN 39327 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑒) = (𝑒 ∘ 𝑠))
69683adantr2 1171 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑒) = (𝑒 ∘ 𝑠))
7067, 69eqtrd 2773 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀𝑒) = (𝑒 ∘ 𝑠))
7152, 70oveq12d 7379 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑑)𝑃(𝑠𝑀𝑒)) = ((𝑑 ∘ 𝑠)𝑃(𝑒 ∘ 𝑠)))
7259, 66, 713eqtr4d 2783 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑀(𝑑𝑃𝑒)) = ((𝑠𝑀𝑑)𝑃(𝑠𝑀𝑒)))
731, 2, 3, 8tendodi1 39297 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑒 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) β†’ (𝑒 ∘ (𝑠𝑃𝑑)) = ((𝑒 ∘ 𝑠)𝑃(𝑒 ∘ 𝑑)))
7435, 37, 36, 38, 73syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑒 ∘ (𝑠𝑃𝑑)) = ((𝑒 ∘ 𝑠)𝑃(𝑒 ∘ 𝑑)))
7515adantr 482 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ 𝑀 = (.rβ€˜π·))
7675oveqd 7378 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑)𝑀𝑒) = ((𝑠𝑃𝑑)(.rβ€˜π·)𝑒))
771, 2, 3, 8tendoplcl 39294 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠𝑃𝑑) ∈ 𝐸)
78773adant3r3 1185 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑃𝑑) ∈ 𝐸)
791, 2, 3, 4, 13erngmul-rN 39327 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑠𝑃𝑑) ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑)(.rβ€˜π·)𝑒) = (𝑒 ∘ (𝑠𝑃𝑑)))
8035, 78, 37, 79syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑)(.rβ€˜π·)𝑒) = (𝑒 ∘ (𝑠𝑃𝑑)))
8176, 80eqtrd 2773 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑)𝑀𝑒) = (𝑒 ∘ (𝑠𝑃𝑑)))
8270, 31oveq12d 7379 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑀𝑒)𝑃(𝑑𝑀𝑒)) = ((𝑒 ∘ 𝑠)𝑃(𝑒 ∘ 𝑑)))
8374, 81, 823eqtr4d 2783 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑)𝑀𝑒) = ((𝑠𝑀𝑒)𝑃(𝑑𝑀𝑒)))
841, 2, 3tendoidcl 39282 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
8515oveqd 7378 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (( I β†Ύ 𝑇)𝑀𝑠) = (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠))
8685adantr 482 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇)𝑀𝑠) = (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠))
87 simpl 484 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
8884adantr 482 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
89 simpr 486 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ 𝑠 ∈ 𝐸)
901, 2, 3, 4, 13erngmul-rN 39327 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (( I β†Ύ 𝑇) ∈ 𝐸 ∧ 𝑠 ∈ 𝐸)) β†’ (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠) = (𝑠 ∘ ( I β†Ύ 𝑇)))
9187, 88, 89, 90syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠) = (𝑠 ∘ ( I β†Ύ 𝑇)))
921, 2, 3tendo1mulr 39284 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠 ∘ ( I β†Ύ 𝑇)) = 𝑠)
9386, 91, 923eqtrd 2777 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇)𝑀𝑠) = 𝑠)
9415oveqd 7378 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠𝑀( I β†Ύ 𝑇)) = (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)))
9594adantr 482 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠𝑀( I β†Ύ 𝑇)) = (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)))
961, 2, 3, 4, 13erngmul-rN 39327 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ ( I β†Ύ 𝑇) ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)) = (( I β†Ύ 𝑇) ∘ 𝑠))
9787, 89, 88, 96syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)) = (( I β†Ύ 𝑇) ∘ 𝑠))
981, 2, 3tendo1mul 39283 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇) ∘ 𝑠) = 𝑠)
9995, 97, 983eqtrd 2777 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠𝑀( I β†Ύ 𝑇)) = 𝑠)
1007, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99isringd 20017 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   ↦ cmpt 5192   I cid 5534  β—‘ccnv 5636   β†Ύ cres 5639   ∘ ccom 5641  β€˜cfv 6500  (class class class)co 7361   ∈ cmpo 7363  Basecbs 17091  +gcplusg 17141  .rcmulr 17142  Ringcrg 19972  HLchlt 37862  LHypclh 38497  LTrncltrn 38614  TEndoctendo 39265  EDRingRcedring-rN 39267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-riotaBAD 37465
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-undef 8208  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-plusg 17154  df-mulr 17155  df-0g 17331  df-proset 18192  df-poset 18210  df-plt 18227  df-lub 18243  df-glb 18244  df-join 18245  df-meet 18246  df-p0 18322  df-p1 18323  df-lat 18329  df-clat 18396  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-mgp 19905  df-ring 19974  df-oposet 37688  df-ol 37690  df-oml 37691  df-covers 37778  df-ats 37779  df-atl 37810  df-cvlat 37834  df-hlat 37863  df-llines 38011  df-lplanes 38012  df-lvols 38013  df-lines 38014  df-psubsp 38016  df-pmap 38017  df-padd 38309  df-lhyp 38501  df-laut 38502  df-ldil 38617  df-ltrn 38618  df-trl 38672  df-tendo 39268  df-edring-rN 39269
This theorem is referenced by:  erngdvlem4-rN  39512  erngring-rN  39513
  Copyright terms: Public domain W3C validator