Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhlveclem Structured version   Visualization version   GIF version

Theorem dvhlveclem 41109
Description: Lemma for dvhlvec 41110. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does 𝜑 method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b 𝐵 = (Base‘𝐾)
dvhgrp.h 𝐻 = (LHyp‘𝐾)
dvhgrp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhgrp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhgrp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhgrp.d 𝐷 = (Scalar‘𝑈)
dvhgrp.p = (+g𝐷)
dvhgrp.a + = (+g𝑈)
dvhgrp.o 0 = (0g𝐷)
dvhgrp.i 𝐼 = (invg𝐷)
dvhlvec.m × = (.r𝐷)
dvhlvec.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvhlveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvhlveclem
Dummy variables 𝑡 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvhgrp.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhgrp.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhgrp.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2730 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
61, 2, 3, 4, 5dvhvbase 41088 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (𝑇 × 𝐸))
76eqcomd 2736 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 × 𝐸) = (Base‘𝑈))
8 dvhgrp.a . . . 4 + = (+g𝑈)
98a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
10 dvhgrp.d . . . 4 𝐷 = (Scalar‘𝑈)
1110a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
12 dvhlvec.s . . . 4 · = ( ·𝑠𝑈)
1312a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
14 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 3, 4, 10, 14dvhbase 41084 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2736 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvhgrp.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvhlvec.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
21 eqid 2730 . . . . . 6 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
221, 21, 4, 10dvhsca 41083 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2322fveq2d 6865 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = (1r‘((EDRing‘𝐾)‘𝑊)))
24 eqid 2730 . . . . 5 (1r‘((EDRing‘𝐾)‘𝑊)) = (1r‘((EDRing‘𝐾)‘𝑊))
251, 2, 21, 24erng1r 40996 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r‘((EDRing‘𝐾)‘𝑊)) = ( I ↾ 𝑇))
2623, 25eqtr2d 2766 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
271, 21erngdv 40994 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
2822, 27eqeltrd 2829 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
29 drngring 20652 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
3028, 29syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
31 dvhgrp.b . . . 4 𝐵 = (Base‘𝐾)
32 dvhgrp.o . . . 4 0 = (0g𝐷)
33 dvhgrp.i . . . 4 𝐼 = (invg𝐷)
3431, 1, 2, 3, 4, 10, 17, 8, 32, 33dvhgrp 41108 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
351, 2, 3, 4, 12dvhvscacl 41104 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
36353impb 1114 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡 ∈ (𝑇 × 𝐸)) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
37 simpl 482 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
38 simpr1 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
39 simpr2 1196 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (𝑇 × 𝐸))
40 xp1st 8003 . . . . . . . 8 (𝑡 ∈ (𝑇 × 𝐸) → (1st𝑡) ∈ 𝑇)
4139, 40syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑡) ∈ 𝑇)
42 simpr3 1197 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
43 xp1st 8003 . . . . . . . 8 (𝑓 ∈ (𝑇 × 𝐸) → (1st𝑓) ∈ 𝑇)
4442, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
451, 2, 3tendospdi1 41021 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (1st𝑡) ∈ 𝑇 ∧ (1st𝑓) ∈ 𝑇)) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
4637, 38, 41, 44, 45syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
471, 2, 3, 4, 10, 8, 17dvhvadd 41093 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
48473adantr1 1170 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
4948fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
50 fvex 6874 . . . . . . . . . 10 (1st𝑡) ∈ V
51 fvex 6874 . . . . . . . . . 10 (1st𝑓) ∈ V
5250, 51coex 7909 . . . . . . . . 9 ((1st𝑡) ∘ (1st𝑓)) ∈ V
53 ovex 7423 . . . . . . . . 9 ((2nd𝑡) (2nd𝑓)) ∈ V
5452, 53op1st 7979 . . . . . . . 8 (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((1st𝑡) ∘ (1st𝑓))
5549, 54eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = ((1st𝑡) ∘ (1st𝑓)))
5655fveq2d 6865 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = (𝑠‘((1st𝑡) ∘ (1st𝑓))))
571, 2, 3, 4, 12dvhvsca 41102 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
58573adantr3 1172 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
5958fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
60 fvex 6874 . . . . . . . . 9 (𝑠‘(1st𝑡)) ∈ V
61 vex 3454 . . . . . . . . . 10 𝑠 ∈ V
62 fvex 6874 . . . . . . . . . 10 (2nd𝑡) ∈ V
6361, 62coex 7909 . . . . . . . . 9 (𝑠 ∘ (2nd𝑡)) ∈ V
6460, 63op1st 7979 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠‘(1st𝑡))
6559, 64eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (𝑠‘(1st𝑡)))
661, 2, 3, 4, 12dvhvsca 41102 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
67663adantr2 1171 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
6867fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
69 fvex 6874 . . . . . . . . 9 (𝑠‘(1st𝑓)) ∈ V
70 fvex 6874 . . . . . . . . . 10 (2nd𝑓) ∈ V
7161, 70coex 7909 . . . . . . . . 9 (𝑠 ∘ (2nd𝑓)) ∈ V
7269, 71op1st 7979 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠‘(1st𝑓))
7368, 72eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
7465, 73coeq12d 5831 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
7546, 56, 743eqtr4d 2775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))))
7630adantr 480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
7716adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
7838, 77eleqtrd 2831 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
79 xp2nd 8004 . . . . . . . . . 10 (𝑡 ∈ (𝑇 × 𝐸) → (2nd𝑡) ∈ 𝐸)
8039, 79syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ 𝐸)
8180, 77eleqtrd 2831 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ (Base‘𝐷))
82 xp2nd 8004 . . . . . . . . . 10 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
8342, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
8483, 77eleqtrd 2831 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
8514, 17, 19ringdi 20177 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8676, 78, 81, 84, 85syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8714, 17ringacl 20194 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8876, 81, 84, 87syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8988, 77eleqtrrd 2832 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)
901, 2, 3, 4, 10, 19dvhmulr 41087 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
9137, 38, 89, 90syl12anc 836 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
921, 2, 3, 4, 10, 19dvhmulr 41087 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑡) ∈ 𝐸)) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
9337, 38, 80, 92syl12anc 836 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
941, 2, 3, 4, 10, 19dvhmulr 41087 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9537, 38, 83, 94syl12anc 836 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9693, 95oveq12d 7408 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9786, 91, 963eqtr3d 2773 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ ((2nd𝑡) (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9848fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
9952, 53op2nd 7980 . . . . . . . 8 (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((2nd𝑡) (2nd𝑓))
10098, 99eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = ((2nd𝑡) (2nd𝑓)))
101100coeq2d 5829 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
10258fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
10360, 63op2nd 7980 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠 ∘ (2nd𝑡))
104102, 103eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (𝑠 ∘ (2nd𝑡)))
10567fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
10669, 71op2nd 7980 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠 ∘ (2nd𝑓))
107105, 106eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
108104, 107oveq12d 7408 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
10997, 101, 1083eqtr4d 2775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))))
11075, 109opeq12d 4848 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩ = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
1111, 2, 3, 4, 10, 17, 8dvhvaddcl 41096 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1121113adantr1 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1131, 2, 3, 4, 12dvhvsca 41102 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
11437, 38, 112, 113syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
115353adantr3 1172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
1161, 2, 3, 4, 12dvhvscacl 41104 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1171163adantr2 1171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1181, 2, 3, 4, 10, 8, 17dvhvadd 41093 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑡) ∈ (𝑇 × 𝐸) ∧ (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
11937, 115, 117, 118syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
120110, 114, 1193eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
121 simpl 482 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
122 simpr1 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
123 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡𝐸)
124 simpr3 1197 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
125124, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
126 eqid 2730 . . . . . . . 8 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
1271, 2, 3, 21, 126erngplus2 40805 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇)) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
128121, 122, 123, 125, 127syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
12922fveq2d 6865 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (+g‘((EDRing‘𝐾)‘𝑊)))
13017, 129eqtrid 2777 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g‘((EDRing‘𝐾)‘𝑊)))
131130oveqd 7407 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 𝑡) = (𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡))
132131fveq1d 6863 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
133132adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
134663adantr2 1171 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
135134fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
136135, 72eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
1371, 2, 3, 4, 12dvhvsca 41102 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
1381373adantr1 1170 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
139138fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
140 fvex 6874 . . . . . . . . 9 (𝑡‘(1st𝑓)) ∈ V
141 vex 3454 . . . . . . . . . 10 𝑡 ∈ V
142141, 70coex 7909 . . . . . . . . 9 (𝑡 ∘ (2nd𝑓)) ∈ V
143140, 142op1st 7979 . . . . . . . 8 (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡‘(1st𝑓))
144139, 143eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (𝑡‘(1st𝑓)))
145136, 144coeq12d 5831 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
146128, 133, 1453eqtr4d 2775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))))
14730adantr 480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
14816adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
149122, 148eleqtrd 2831 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
150123, 148eleqtrd 2831 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (Base‘𝐷))
151124, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
152151, 148eleqtrd 2831 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
15314, 17, 19ringdir 20178 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
154147, 149, 150, 152, 153syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
15514, 17ringacl 20194 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ 𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷)) → (𝑠 𝑡) ∈ (Base‘𝐷))
156147, 149, 150, 155syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ (Base‘𝐷))
157156, 148eleqtrrd 2832 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ 𝐸)
1581, 2, 3, 4, 10, 19dvhmulr 41087 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
159121, 157, 151, 158syl12anc 836 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
160121, 122, 151, 94syl12anc 836 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
1611, 2, 3, 4, 10, 19dvhmulr 41087 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
162121, 123, 151, 161syl12anc 836 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
163160, 162oveq12d 7408 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
164154, 159, 1633eqtr3d 2773 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
165134fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
166165, 106eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
167138fveq2d 6865 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
168140, 142op2nd 7980 . . . . . . . 8 (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡 ∘ (2nd𝑓))
169167, 168eqtrdi 2781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (𝑡 ∘ (2nd𝑓)))
170166, 169oveq12d 7408 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
171164, 170eqtr4d 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))))
172146, 171opeq12d 4848 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩ = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
1731, 2, 3, 4, 12dvhvsca 41102 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
174121, 157, 124, 173syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
1751163adantr2 1171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1761, 2, 3, 4, 12dvhvscacl 41104 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1771763adantr1 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1781, 2, 3, 4, 10, 8, 17dvhvadd 41093 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑓) ∈ (𝑇 × 𝐸) ∧ (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
179121, 175, 177, 178syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
180172, 174, 1793eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1811, 2, 3tendocoval 40767 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸) ∧ (1st𝑓) ∈ 𝑇) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
182121, 122, 123, 125, 181syl121anc 1377 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
183 coass 6241 . . . . . . 7 ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))
184183a1i 11 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓))))
185182, 184opeq12d 4848 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩ = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
1861, 3tendococl 40773 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
187121, 122, 123, 186syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠𝑡) ∈ 𝐸)
1881, 2, 3, 4, 12dvhvsca 41102 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
189121, 187, 124, 188syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
1901, 2, 3tendocl 40768 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇) → (𝑡‘(1st𝑓)) ∈ 𝑇)
191121, 123, 125, 190syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡‘(1st𝑓)) ∈ 𝑇)
1921, 3tendococl 40773 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
193121, 123, 151, 192syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
1941, 2, 3, 4, 12dvhopvsca 41103 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡‘(1st𝑓)) ∈ 𝑇 ∧ (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
195121, 122, 191, 193, 194syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
196185, 189, 1953eqtr4d 2775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
1971, 2, 3, 4, 10, 19dvhmulr 41087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1981973adantr3 1172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × 𝑡) = (𝑠𝑡))
199198oveq1d 7405 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
200138oveq2d 7406 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
201196, 199, 2003eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
202 xp1st 8003 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (1st𝑠) ∈ 𝑇)
203202adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (1st𝑠) ∈ 𝑇)
204 fvresi 7150 . . . . . 6 ((1st𝑠) ∈ 𝑇 → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
205203, 204syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
206 xp2nd 8004 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (2nd𝑠) ∈ 𝐸)
2071, 2, 3tendof 40764 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑠) ∈ 𝐸) → (2nd𝑠):𝑇𝑇)
208206, 207sylan2 593 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (2nd𝑠):𝑇𝑇)
209 fcoi2 6738 . . . . . 6 ((2nd𝑠):𝑇𝑇 → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
210208, 209syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
211205, 210opeq12d 4848 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩ = ⟨(1st𝑠), (2nd𝑠)⟩)
2121, 2, 3tendoidcl 40770 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
213212anim1i 615 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸)))
2141, 2, 3, 4, 12dvhvsca 41102 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸))) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
215213, 214syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
216 1st2nd2 8010 . . . . 5 (𝑠 ∈ (𝑇 × 𝐸) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
217216adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
218211, 215, 2173eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
2197, 9, 11, 13, 16, 18, 20, 26, 30, 34, 36, 120, 180, 201, 218islmodd 20779 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
22010islvec 21018 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
221219, 28, 220sylanbrc 583 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4598   I cid 5535   × cxp 5639  cres 5643  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  invgcminusg 18873  1rcur 20097  Ringcrg 20149  DivRingcdr 20645  LModclmod 20773  LVecclvec 21016  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  EDRingcedring 40754  DVecHcdvh 41079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lvec 21017  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758  df-dvech 41080
This theorem is referenced by:  dvhlvec  41110
  Copyright terms: Public domain W3C validator