Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhlveclem Structured version   Visualization version   GIF version

Theorem dvhlveclem 38259
Description: Lemma for dvhlvec 38260. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does 𝜑 method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b 𝐵 = (Base‘𝐾)
dvhgrp.h 𝐻 = (LHyp‘𝐾)
dvhgrp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhgrp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhgrp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhgrp.d 𝐷 = (Scalar‘𝑈)
dvhgrp.p = (+g𝐷)
dvhgrp.a + = (+g𝑈)
dvhgrp.o 0 = (0g𝐷)
dvhgrp.i 𝐼 = (invg𝐷)
dvhlvec.m × = (.r𝐷)
dvhlvec.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvhlveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvhlveclem
Dummy variables 𝑡 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvhgrp.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhgrp.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhgrp.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2821 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
61, 2, 3, 4, 5dvhvbase 38238 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (𝑇 × 𝐸))
76eqcomd 2827 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 × 𝐸) = (Base‘𝑈))
8 dvhgrp.a . . . 4 + = (+g𝑈)
98a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
10 dvhgrp.d . . . 4 𝐷 = (Scalar‘𝑈)
1110a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
12 dvhlvec.s . . . 4 · = ( ·𝑠𝑈)
1312a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
14 eqid 2821 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 3, 4, 10, 14dvhbase 38234 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2827 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvhgrp.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvhlvec.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
21 eqid 2821 . . . . . 6 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
221, 21, 4, 10dvhsca 38233 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2322fveq2d 6674 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = (1r‘((EDRing‘𝐾)‘𝑊)))
24 eqid 2821 . . . . 5 (1r‘((EDRing‘𝐾)‘𝑊)) = (1r‘((EDRing‘𝐾)‘𝑊))
251, 2, 21, 24erng1r 38146 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r‘((EDRing‘𝐾)‘𝑊)) = ( I ↾ 𝑇))
2623, 25eqtr2d 2857 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
271, 21erngdv 38144 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
2822, 27eqeltrd 2913 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
29 drngring 19509 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
3028, 29syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
31 dvhgrp.b . . . 4 𝐵 = (Base‘𝐾)
32 dvhgrp.o . . . 4 0 = (0g𝐷)
33 dvhgrp.i . . . 4 𝐼 = (invg𝐷)
3431, 1, 2, 3, 4, 10, 17, 8, 32, 33dvhgrp 38258 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
351, 2, 3, 4, 12dvhvscacl 38254 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
36353impb 1111 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡 ∈ (𝑇 × 𝐸)) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
37 simpl 485 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
38 simpr1 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
39 simpr2 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (𝑇 × 𝐸))
40 xp1st 7721 . . . . . . . 8 (𝑡 ∈ (𝑇 × 𝐸) → (1st𝑡) ∈ 𝑇)
4139, 40syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑡) ∈ 𝑇)
42 simpr3 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
43 xp1st 7721 . . . . . . . 8 (𝑓 ∈ (𝑇 × 𝐸) → (1st𝑓) ∈ 𝑇)
4442, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
451, 2, 3tendospdi1 38171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (1st𝑡) ∈ 𝑇 ∧ (1st𝑓) ∈ 𝑇)) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
4637, 38, 41, 44, 45syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
471, 2, 3, 4, 10, 8, 17dvhvadd 38243 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
48473adantr1 1165 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
4948fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
50 fvex 6683 . . . . . . . . . 10 (1st𝑡) ∈ V
51 fvex 6683 . . . . . . . . . 10 (1st𝑓) ∈ V
5250, 51coex 7635 . . . . . . . . 9 ((1st𝑡) ∘ (1st𝑓)) ∈ V
53 ovex 7189 . . . . . . . . 9 ((2nd𝑡) (2nd𝑓)) ∈ V
5452, 53op1st 7697 . . . . . . . 8 (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((1st𝑡) ∘ (1st𝑓))
5549, 54syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = ((1st𝑡) ∘ (1st𝑓)))
5655fveq2d 6674 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = (𝑠‘((1st𝑡) ∘ (1st𝑓))))
571, 2, 3, 4, 12dvhvsca 38252 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
58573adantr3 1167 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
5958fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
60 fvex 6683 . . . . . . . . 9 (𝑠‘(1st𝑡)) ∈ V
61 vex 3497 . . . . . . . . . 10 𝑠 ∈ V
62 fvex 6683 . . . . . . . . . 10 (2nd𝑡) ∈ V
6361, 62coex 7635 . . . . . . . . 9 (𝑠 ∘ (2nd𝑡)) ∈ V
6460, 63op1st 7697 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠‘(1st𝑡))
6559, 64syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (𝑠‘(1st𝑡)))
661, 2, 3, 4, 12dvhvsca 38252 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
67663adantr2 1166 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
6867fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
69 fvex 6683 . . . . . . . . 9 (𝑠‘(1st𝑓)) ∈ V
70 fvex 6683 . . . . . . . . . 10 (2nd𝑓) ∈ V
7161, 70coex 7635 . . . . . . . . 9 (𝑠 ∘ (2nd𝑓)) ∈ V
7269, 71op1st 7697 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠‘(1st𝑓))
7368, 72syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
7465, 73coeq12d 5735 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
7546, 56, 743eqtr4d 2866 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))))
7630adantr 483 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
7716adantr 483 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
7838, 77eleqtrd 2915 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
79 xp2nd 7722 . . . . . . . . . 10 (𝑡 ∈ (𝑇 × 𝐸) → (2nd𝑡) ∈ 𝐸)
8039, 79syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ 𝐸)
8180, 77eleqtrd 2915 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ (Base‘𝐷))
82 xp2nd 7722 . . . . . . . . . 10 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
8342, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
8483, 77eleqtrd 2915 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
8514, 17, 19ringdi 19316 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8676, 78, 81, 84, 85syl13anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8714, 17ringacl 19328 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8876, 81, 84, 87syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8988, 77eleqtrrd 2916 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)
901, 2, 3, 4, 10, 19dvhmulr 38237 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
9137, 38, 89, 90syl12anc 834 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
921, 2, 3, 4, 10, 19dvhmulr 38237 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑡) ∈ 𝐸)) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
9337, 38, 80, 92syl12anc 834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
941, 2, 3, 4, 10, 19dvhmulr 38237 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9537, 38, 83, 94syl12anc 834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9693, 95oveq12d 7174 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9786, 91, 963eqtr3d 2864 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ ((2nd𝑡) (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9848fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
9952, 53op2nd 7698 . . . . . . . 8 (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((2nd𝑡) (2nd𝑓))
10098, 99syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = ((2nd𝑡) (2nd𝑓)))
101100coeq2d 5733 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
10258fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
10360, 63op2nd 7698 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠 ∘ (2nd𝑡))
104102, 103syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (𝑠 ∘ (2nd𝑡)))
10567fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
10669, 71op2nd 7698 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠 ∘ (2nd𝑓))
107105, 106syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
108104, 107oveq12d 7174 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
10997, 101, 1083eqtr4d 2866 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))))
11075, 109opeq12d 4811 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩ = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
1111, 2, 3, 4, 10, 17, 8dvhvaddcl 38246 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1121113adantr1 1165 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1131, 2, 3, 4, 12dvhvsca 38252 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
11437, 38, 112, 113syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
115353adantr3 1167 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
1161, 2, 3, 4, 12dvhvscacl 38254 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1171163adantr2 1166 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1181, 2, 3, 4, 10, 8, 17dvhvadd 38243 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑡) ∈ (𝑇 × 𝐸) ∧ (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
11937, 115, 117, 118syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
120110, 114, 1193eqtr4d 2866 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
121 simpl 485 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
122 simpr1 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
123 simpr2 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡𝐸)
124 simpr3 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
125124, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
126 eqid 2821 . . . . . . . 8 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
1271, 2, 3, 21, 126erngplus2 37955 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇)) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
128121, 122, 123, 125, 127syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
12922fveq2d 6674 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (+g‘((EDRing‘𝐾)‘𝑊)))
13017, 129syl5eq 2868 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g‘((EDRing‘𝐾)‘𝑊)))
131130oveqd 7173 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 𝑡) = (𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡))
132131fveq1d 6672 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
133132adantr 483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
134663adantr2 1166 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
135134fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
136135, 72syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
1371, 2, 3, 4, 12dvhvsca 38252 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
1381373adantr1 1165 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
139138fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
140 fvex 6683 . . . . . . . . 9 (𝑡‘(1st𝑓)) ∈ V
141 vex 3497 . . . . . . . . . 10 𝑡 ∈ V
142141, 70coex 7635 . . . . . . . . 9 (𝑡 ∘ (2nd𝑓)) ∈ V
143140, 142op1st 7697 . . . . . . . 8 (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡‘(1st𝑓))
144139, 143syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (𝑡‘(1st𝑓)))
145136, 144coeq12d 5735 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
146128, 133, 1453eqtr4d 2866 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))))
14730adantr 483 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
14816adantr 483 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
149122, 148eleqtrd 2915 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
150123, 148eleqtrd 2915 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (Base‘𝐷))
151124, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
152151, 148eleqtrd 2915 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
15314, 17, 19ringdir 19317 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
154147, 149, 150, 152, 153syl13anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
15514, 17ringacl 19328 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ 𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷)) → (𝑠 𝑡) ∈ (Base‘𝐷))
156147, 149, 150, 155syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ (Base‘𝐷))
157156, 148eleqtrrd 2916 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ 𝐸)
1581, 2, 3, 4, 10, 19dvhmulr 38237 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
159121, 157, 151, 158syl12anc 834 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
160121, 122, 151, 94syl12anc 834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
1611, 2, 3, 4, 10, 19dvhmulr 38237 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
162121, 123, 151, 161syl12anc 834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
163160, 162oveq12d 7174 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
164154, 159, 1633eqtr3d 2864 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
165134fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
166165, 106syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
167138fveq2d 6674 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
168140, 142op2nd 7698 . . . . . . . 8 (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡 ∘ (2nd𝑓))
169167, 168syl6eq 2872 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (𝑡 ∘ (2nd𝑓)))
170166, 169oveq12d 7174 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
171164, 170eqtr4d 2859 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))))
172146, 171opeq12d 4811 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩ = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
1731, 2, 3, 4, 12dvhvsca 38252 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
174121, 157, 124, 173syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
1751163adantr2 1166 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1761, 2, 3, 4, 12dvhvscacl 38254 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1771763adantr1 1165 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1781, 2, 3, 4, 10, 8, 17dvhvadd 38243 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑓) ∈ (𝑇 × 𝐸) ∧ (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
179121, 175, 177, 178syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
180172, 174, 1793eqtr4d 2866 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1811, 2, 3tendocoval 37917 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸) ∧ (1st𝑓) ∈ 𝑇) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
182121, 122, 123, 125, 181syl121anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
183 coass 6118 . . . . . . 7 ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))
184183a1i 11 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓))))
185182, 184opeq12d 4811 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩ = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
1861, 3tendococl 37923 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
187121, 122, 123, 186syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠𝑡) ∈ 𝐸)
1881, 2, 3, 4, 12dvhvsca 38252 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
189121, 187, 124, 188syl12anc 834 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
1901, 2, 3tendocl 37918 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇) → (𝑡‘(1st𝑓)) ∈ 𝑇)
191121, 123, 125, 190syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡‘(1st𝑓)) ∈ 𝑇)
1921, 3tendococl 37923 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
193121, 123, 151, 192syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
1941, 2, 3, 4, 12dvhopvsca 38253 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡‘(1st𝑓)) ∈ 𝑇 ∧ (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
195121, 122, 191, 193, 194syl13anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
196185, 189, 1953eqtr4d 2866 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
1971, 2, 3, 4, 10, 19dvhmulr 38237 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1981973adantr3 1167 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × 𝑡) = (𝑠𝑡))
199198oveq1d 7171 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
200138oveq2d 7172 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
201196, 199, 2003eqtr4d 2866 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
202 xp1st 7721 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (1st𝑠) ∈ 𝑇)
203202adantl 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (1st𝑠) ∈ 𝑇)
204 fvresi 6935 . . . . . 6 ((1st𝑠) ∈ 𝑇 → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
205203, 204syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
206 xp2nd 7722 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (2nd𝑠) ∈ 𝐸)
2071, 2, 3tendof 37914 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑠) ∈ 𝐸) → (2nd𝑠):𝑇𝑇)
208206, 207sylan2 594 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (2nd𝑠):𝑇𝑇)
209 fcoi2 6553 . . . . . 6 ((2nd𝑠):𝑇𝑇 → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
210208, 209syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
211205, 210opeq12d 4811 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩ = ⟨(1st𝑠), (2nd𝑠)⟩)
2121, 2, 3tendoidcl 37920 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
213212anim1i 616 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸)))
2141, 2, 3, 4, 12dvhvsca 38252 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸))) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
215213, 214syldan 593 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
216 1st2nd2 7728 . . . . 5 (𝑠 ∈ (𝑇 × 𝐸) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
217216adantl 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
218211, 215, 2173eqtr4d 2866 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
2197, 9, 11, 13, 16, 18, 20, 26, 30, 34, 36, 120, 180, 201, 218islmodd 19640 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
22010islvec 19876 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
221219, 28, 220sylanbrc 585 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cop 4573   I cid 5459   × cxp 5553  cres 5557  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  invgcminusg 18104  1rcur 19251  Ringcrg 19297  DivRingcdr 19502  LModclmod 19634  LVecclvec 19874  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  TEndoctendo 37903  EDRingcedring 37904  DVecHcdvh 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-undef 7939  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-lmod 19636  df-lvec 19875  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tendo 37906  df-edring 37908  df-dvech 38230
This theorem is referenced by:  dvhlvec  38260
  Copyright terms: Public domain W3C validator