| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | imasgrp.u | . . . 4
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | 
| 2 |  | imasgrp.v | . . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | 
| 3 |  | imasgrp.f | . . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | 
| 4 |  | imasgrp2.r | . . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) | 
| 5 | 1, 2, 3, 4 | imasbas 17557 | . . 3
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) | 
| 6 |  | eqidd 2738 | . . 3
⊢ (𝜑 → (+g‘𝑈) = (+g‘𝑈)) | 
| 7 |  | imasgrp.e | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | 
| 8 |  | imasgrp.p | . . . . . . . . . 10
⊢ (𝜑 → + =
(+g‘𝑅)) | 
| 9 | 8 | oveqd 7448 | . . . . . . . . 9
⊢ (𝜑 → (𝑎 + 𝑏) = (𝑎(+g‘𝑅)𝑏)) | 
| 10 | 9 | fveq2d 6910 | . . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑎(+g‘𝑅)𝑏))) | 
| 11 | 8 | oveqd 7448 | . . . . . . . . 9
⊢ (𝜑 → (𝑝 + 𝑞) = (𝑝(+g‘𝑅)𝑞)) | 
| 12 | 11 | fveq2d 6910 | . . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝑝 + 𝑞)) = (𝐹‘(𝑝(+g‘𝑅)𝑞))) | 
| 13 | 10, 12 | eqeq12d 2753 | . . . . . . 7
⊢ (𝜑 → ((𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)) ↔ (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) | 
| 14 | 13 | 3ad2ant1 1134 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)) ↔ (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) | 
| 15 | 7, 14 | sylibd 239 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) | 
| 16 |  | eqid 2737 | . . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 17 |  | eqid 2737 | . . . . 5
⊢
(+g‘𝑈) = (+g‘𝑈) | 
| 18 | 11 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 + 𝑞) = (𝑝(+g‘𝑅)𝑞)) | 
| 19 |  | imasgrp2.1 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 20 | 19 | 3expb 1121 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 21 | 20 | caovclg 7625 | . . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 + 𝑞) ∈ 𝑉) | 
| 22 | 18, 21 | eqeltrrd 2842 | . . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝(+g‘𝑅)𝑞) ∈ 𝑉) | 
| 23 | 3, 15, 1, 2, 4, 16,
17, 22 | imasaddf 17578 | . . . 4
⊢ (𝜑 → (+g‘𝑈):(𝐵 × 𝐵)⟶𝐵) | 
| 24 |  | fovcdm 7603 | . . . 4
⊢
(((+g‘𝑈):(𝐵 × 𝐵)⟶𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(+g‘𝑈)𝑣) ∈ 𝐵) | 
| 25 | 23, 24 | syl3an1 1164 | . . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(+g‘𝑈)𝑣) ∈ 𝐵) | 
| 26 |  | forn 6823 | . . . . . . . . . 10
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | 
| 27 | 3, 26 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → ran 𝐹 = 𝐵) | 
| 28 | 27 | eleq2d 2827 | . . . . . . . 8
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵)) | 
| 29 | 27 | eleq2d 2827 | . . . . . . . 8
⊢ (𝜑 → (𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵)) | 
| 30 | 27 | eleq2d 2827 | . . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵)) | 
| 31 | 28, 29, 30 | 3anbi123d 1438 | . . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) | 
| 32 |  | fofn 6822 | . . . . . . . . 9
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | 
| 33 | 3, 32 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝑉) | 
| 34 |  | fvelrnb 6969 | . . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) | 
| 35 |  | fvelrnb 6969 | . . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣)) | 
| 36 |  | fvelrnb 6969 | . . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) | 
| 37 | 34, 35, 36 | 3anbi123d 1438 | . . . . . . . 8
⊢ (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) | 
| 38 | 33, 37 | syl 17 | . . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) | 
| 39 | 31, 38 | bitr3d 281 | . . . . . 6
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) | 
| 40 |  | 3reeanv 3230 | . . . . . 6
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) | 
| 41 | 39, 40 | bitr4di 289 | . . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤))) | 
| 42 |  | imasgrp2.2 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) | 
| 43 | 8 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → + =
(+g‘𝑅)) | 
| 44 | 43 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥 + 𝑦)(+g‘𝑅)𝑧)) | 
| 45 | 44 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘((𝑥 + 𝑦)(+g‘𝑅)𝑧))) | 
| 46 | 43 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g‘𝑅)(𝑦 + 𝑧))) | 
| 47 | 46 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑥 + (𝑦 + 𝑧))) = (𝐹‘(𝑥(+g‘𝑅)(𝑦 + 𝑧)))) | 
| 48 | 42, 45, 47 | 3eqtr3d 2785 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦)(+g‘𝑅)𝑧)) = (𝐹‘(𝑥(+g‘𝑅)(𝑦 + 𝑧)))) | 
| 49 |  | simpl 482 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝜑) | 
| 50 | 19 | 3adant3r3 1185 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 51 |  | simpr3 1197 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) | 
| 52 | 3, 15, 1, 2, 4, 16,
17 | imasaddval 17577 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦)(+g‘𝑅)𝑧))) | 
| 53 | 49, 50, 51, 52 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦)(+g‘𝑅)𝑧))) | 
| 54 |  | simpr1 1195 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ 𝑉) | 
| 55 | 21 | caovclg 7625 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) | 
| 56 | 55 | 3adantr1 1170 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) | 
| 57 | 3, 15, 1, 2, 4, 16,
17 | imasaddval 17577 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥(+g‘𝑅)(𝑦 + 𝑧)))) | 
| 58 | 49, 54, 56, 57 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥(+g‘𝑅)(𝑦 + 𝑧)))) | 
| 59 | 48, 53, 58 | 3eqtr4d 2787 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧)))) | 
| 60 | 3, 15, 1, 2, 4, 16,
17 | imasaddval 17577 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥(+g‘𝑅)𝑦))) | 
| 61 | 60 | 3adant3r3 1185 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥(+g‘𝑅)𝑦))) | 
| 62 | 43 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + 𝑦) = (𝑥(+g‘𝑅)𝑦)) | 
| 63 | 62 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘𝑅)𝑦))) | 
| 64 | 61, 63 | eqtr4d 2780 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) | 
| 65 | 64 | oveq1d 7446 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧))) | 
| 66 | 3, 15, 1, 2, 4, 16,
17 | imasaddval 17577 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦(+g‘𝑅)𝑧))) | 
| 67 | 66 | 3adant3r1 1183 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦(+g‘𝑅)𝑧))) | 
| 68 | 43 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) = (𝑦(+g‘𝑅)𝑧)) | 
| 69 | 68 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑦 + 𝑧)) = (𝐹‘(𝑦(+g‘𝑅)𝑧))) | 
| 70 | 67, 69 | eqtr4d 2780 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) | 
| 71 | 70 | oveq2d 7447 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧)))) | 
| 72 | 59, 65, 71 | 3eqtr4d 2787 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)))) | 
| 73 |  | simp1 1137 | . . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑥) = 𝑢) | 
| 74 |  | simp2 1138 | . . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑦) = 𝑣) | 
| 75 | 73, 74 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝑢(+g‘𝑈)𝑣)) | 
| 76 |  | simp3 1139 | . . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) = 𝑤) | 
| 77 | 75, 76 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤)) | 
| 78 | 74, 76 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝑣(+g‘𝑈)𝑤)) | 
| 79 | 73, 78 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))) | 
| 80 | 77, 79 | eqeq12d 2753 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) | 
| 81 | 72, 80 | syl5ibcom 245 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) | 
| 82 | 81 | 3exp2 1355 | . . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))))))) | 
| 83 | 82 | imp32 418 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))))) | 
| 84 | 83 | rexlimdv 3153 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) | 
| 85 | 84 | rexlimdvva 3213 | . . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) | 
| 86 | 41, 85 | sylbid 240 | . . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) | 
| 87 | 86 | imp 406 | . . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))) | 
| 88 |  | fof 6820 | . . . . 5
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | 
| 89 | 3, 88 | syl 17 | . . . 4
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) | 
| 90 |  | imasgrp2.3 | . . . 4
⊢ (𝜑 → 0 ∈ 𝑉) | 
| 91 | 89, 90 | ffvelcdmd 7105 | . . 3
⊢ (𝜑 → (𝐹‘ 0 ) ∈ 𝐵) | 
| 92 | 33, 34 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) | 
| 93 | 28, 92 | bitr3d 281 | . . . . 5
⊢ (𝜑 → (𝑢 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) | 
| 94 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝜑) | 
| 95 | 90 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑉) | 
| 96 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | 
| 97 | 3, 15, 1, 2, 4, 16,
17 | imasaddval 17577 | . . . . . . . . 9
⊢ ((𝜑 ∧ 0 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘( 0 (+g‘𝑅)𝑥))) | 
| 98 | 94, 95, 96, 97 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘( 0 (+g‘𝑅)𝑥))) | 
| 99 | 8 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → + =
(+g‘𝑅)) | 
| 100 | 99 | oveqd 7448 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) = ( 0 (+g‘𝑅)𝑥)) | 
| 101 | 100 | fveq2d 6910 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘( 0 (+g‘𝑅)𝑥))) | 
| 102 |  | imasgrp2.4 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) | 
| 103 | 98, 101, 102 | 3eqtr2d 2783 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘𝑥)) | 
| 104 |  | oveq2 7439 | . . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = ((𝐹‘ 0
)(+g‘𝑈)𝑢)) | 
| 105 |  | id 22 | . . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → (𝐹‘𝑥) = 𝑢) | 
| 106 | 104, 105 | eqeq12d 2753 | . . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑢 → (((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘𝑥) ↔ ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) | 
| 107 | 103, 106 | syl5ibcom 245 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥) = 𝑢 → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) | 
| 108 | 107 | rexlimdva 3155 | . . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) | 
| 109 | 93, 108 | sylbid 240 | . . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐵 → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) | 
| 110 | 109 | imp 406 | . . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢) | 
| 111 | 89 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝐹:𝑉⟶𝐵) | 
| 112 |  | imasgrp2.5 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) | 
| 113 | 111, 112 | ffvelcdmd 7105 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑁) ∈ 𝐵) | 
| 114 | 3, 15, 1, 2, 4, 16,
17 | imasaddval 17577 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑁)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘(𝑁(+g‘𝑅)𝑥))) | 
| 115 | 94, 112, 96, 114 | syl3anc 1373 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑁)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘(𝑁(+g‘𝑅)𝑥))) | 
| 116 | 99 | oveqd 7448 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) = (𝑁(+g‘𝑅)𝑥)) | 
| 117 | 116 | fveq2d 6910 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹‘(𝑁(+g‘𝑅)𝑥))) | 
| 118 |  | imasgrp2.6 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹‘ 0 )) | 
| 119 | 115, 117,
118 | 3eqtr2d 2783 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑁)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 )) | 
| 120 |  | oveq1 7438 | . . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑁) → (𝑣(+g‘𝑈)(𝐹‘𝑥)) = ((𝐹‘𝑁)(+g‘𝑈)(𝐹‘𝑥))) | 
| 121 | 120 | eqeq1d 2739 | . . . . . . . . 9
⊢ (𝑣 = (𝐹‘𝑁) → ((𝑣(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 ) ↔ ((𝐹‘𝑁)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 ))) | 
| 122 | 121 | rspcev 3622 | . . . . . . . 8
⊢ (((𝐹‘𝑁) ∈ 𝐵 ∧ ((𝐹‘𝑁)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 )) → ∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 )) | 
| 123 | 113, 119,
122 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 )) | 
| 124 |  | oveq2 7439 | . . . . . . . . 9
⊢ ((𝐹‘𝑥) = 𝑢 → (𝑣(+g‘𝑈)(𝐹‘𝑥)) = (𝑣(+g‘𝑈)𝑢)) | 
| 125 | 124 | eqeq1d 2739 | . . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → ((𝑣(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 ) ↔ (𝑣(+g‘𝑈)𝑢) = (𝐹‘ 0 ))) | 
| 126 | 125 | rexbidv 3179 | . . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑢 → (∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘ 0 ) ↔ ∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)𝑢) = (𝐹‘ 0 ))) | 
| 127 | 123, 126 | syl5ibcom 245 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥) = 𝑢 → ∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)𝑢) = (𝐹‘ 0 ))) | 
| 128 | 127 | rexlimdva 3155 | . . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 → ∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)𝑢) = (𝐹‘ 0 ))) | 
| 129 | 93, 128 | sylbid 240 | . . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐵 → ∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)𝑢) = (𝐹‘ 0 ))) | 
| 130 | 129 | imp 406 | . . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → ∃𝑣 ∈ 𝐵 (𝑣(+g‘𝑈)𝑢) = (𝐹‘ 0 )) | 
| 131 | 5, 6, 25, 87, 91, 110, 130 | isgrpde 18975 | . 2
⊢ (𝜑 → 𝑈 ∈ Grp) | 
| 132 | 5, 6, 91, 110, 131 | grpidd2 18995 | . 2
⊢ (𝜑 → (𝐹‘ 0 ) =
(0g‘𝑈)) | 
| 133 | 131, 132 | jca 511 | 1
⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈))) |