MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccvx Structured version   Visualization version   GIF version

Theorem icccvx 24864
Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
icccvx ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))

Proof of Theorem icccvx
StepHypRef Expression
1 iccss2 13338 . . . . . . 7 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
21adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
323adantr3 1172 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
43adantr 480 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
5 iccssre 13350 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
65sselda 3937 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantrr 717 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ)
85sselda 3937 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ)
98adantrl 716 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐷 ∈ ℝ)
107, 9jca 511 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
11103adantr3 1172 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
12 simpr3 1197 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
1311, 12jca 511 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
14 lincmb01cmp 13416 . . . . . . . . 9 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1514ex 412 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
16153expa 1118 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
1716imp 406 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1817an32s 652 . . . . 5 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1913, 18sylan 580 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
204, 19sseldd 3938 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
21 oveq2 7361 . . . . . 6 (𝐶 = 𝐷 → ((1 − 𝑇) · 𝐶) = ((1 − 𝑇) · 𝐷))
2221oveq1d 7368 . . . . 5 (𝐶 = 𝐷 → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
23 unitssre 13420 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
2423sseli 3933 . . . . . . . . 9 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
2524recnd 11162 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
2625ad2antll 729 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
278recnd 11162 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℂ)
2827adantrr 717 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝐷 ∈ ℂ)
29 ax-1cn 11086 . . . . . . . . . . 11 1 ∈ ℂ
30 npcan 11390 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3129, 30mpan 690 . . . . . . . . . 10 (𝑇 ∈ ℂ → ((1 − 𝑇) + 𝑇) = 1)
3231adantr 480 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3332oveq1d 7368 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (1 · 𝐷))
34 subcl 11380 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
3529, 34mpan 690 . . . . . . . . . 10 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
3635ancri 549 . . . . . . . . 9 (𝑇 ∈ ℂ → ((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ))
37 adddir 11125 . . . . . . . . . 10 (((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
38373expa 1118 . . . . . . . . 9 ((((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
3936, 38sylan 580 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
40 mullid 11133 . . . . . . . . 9 (𝐷 ∈ ℂ → (1 · 𝐷) = 𝐷)
4140adantl 481 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 · 𝐷) = 𝐷)
4233, 39, 413eqtr3d 2772 . . . . . . 7 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4326, 28, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
44433adantr1 1170 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4522, 44sylan9eqr 2786 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = 𝐷)
46 simplr2 1217 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → 𝐷 ∈ (𝐴[,]𝐵))
4745, 46eqeltrd 2828 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
48 iccss2 13338 . . . . . . . 8 ((𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
4948adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5049ancom2s 650 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
51503adantr3 1172 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5251adantr 480 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
539, 7jca 511 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
54533adantr3 1172 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
5554, 12jca 511 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
56 iirev 24839 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
5723, 56sselid 3935 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℝ)
5857recnd 11162 . . . . . . . . . . . . . . 15 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℂ)
59 recn 11118 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
60 mulcl 11112 . . . . . . . . . . . . . . 15 (((1 − 𝑇) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6158, 59, 60syl2anr 597 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6261adantll 714 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
63 recn 11118 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
64 mulcl 11112 . . . . . . . . . . . . . . 15 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝑇 · 𝐷) ∈ ℂ)
6525, 63, 64syl2anr 597 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6665adantlr 715 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6762, 66addcomd 11336 . . . . . . . . . . . 12 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
68673adantl3 1169 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
69 nncan 11411 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
7029, 69mpan 690 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (1 − (1 − 𝑇)) = 𝑇)
7170eqcomd 2735 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → 𝑇 = (1 − (1 − 𝑇)))
7271oveq1d 7368 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (𝑇 · 𝐷) = ((1 − (1 − 𝑇)) · 𝐷))
7372oveq1d 7368 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7425, 73syl 17 . . . . . . . . . . . 12 (𝑇 ∈ (0[,]1) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7574adantl 481 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7668, 75eqtrd 2764 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
77 lincmb01cmp 13416 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7856, 77sylan2 593 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7976, 78eqeltrd 2828 . . . . . . . . 9 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8079ex 412 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
81803expa 1118 . . . . . . 7 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
8281imp 406 . . . . . 6 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8382an32s 652 . . . . 5 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8455, 83sylan 580 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8552, 84sseldd 3938 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
867, 9lttri4d 11275 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
87863adantr3 1172 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
8820, 47, 85, 87mpjao3dan 1434 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
8988ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wss 3905   class class class wbr 5095  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365  [,]cicc 13269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-rp 12912  df-icc 13273
This theorem is referenced by:  reparphti  24912  reparphtiOLD  24913
  Copyright terms: Public domain W3C validator