MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccvx Structured version   Visualization version   GIF version

Theorem icccvx 23558
Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
icccvx ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))

Proof of Theorem icccvx
StepHypRef Expression
1 iccss2 12800 . . . . . . 7 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
21adantl 485 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
323adantr3 1168 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
43adantr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
5 iccssre 12811 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
65sselda 3918 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantrr 716 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ)
85sselda 3918 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ)
98adantrl 715 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐷 ∈ ℝ)
107, 9jca 515 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
11103adantr3 1168 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
12 simpr3 1193 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
1311, 12jca 515 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
14 lincmb01cmp 12877 . . . . . . . . 9 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1514ex 416 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
16153expa 1115 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
1716imp 410 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1817an32s 651 . . . . 5 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1913, 18sylan 583 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
204, 19sseldd 3919 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
21 oveq2 7147 . . . . . 6 (𝐶 = 𝐷 → ((1 − 𝑇) · 𝐶) = ((1 − 𝑇) · 𝐷))
2221oveq1d 7154 . . . . 5 (𝐶 = 𝐷 → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
23 unitssre 12881 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
2423sseli 3914 . . . . . . . . 9 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
2524recnd 10662 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
2625ad2antll 728 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
278recnd 10662 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℂ)
2827adantrr 716 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝐷 ∈ ℂ)
29 ax-1cn 10588 . . . . . . . . . . 11 1 ∈ ℂ
30 npcan 10888 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3129, 30mpan 689 . . . . . . . . . 10 (𝑇 ∈ ℂ → ((1 − 𝑇) + 𝑇) = 1)
3231adantr 484 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3332oveq1d 7154 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (1 · 𝐷))
34 subcl 10878 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
3529, 34mpan 689 . . . . . . . . . 10 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
3635ancri 553 . . . . . . . . 9 (𝑇 ∈ ℂ → ((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ))
37 adddir 10625 . . . . . . . . . 10 (((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
38373expa 1115 . . . . . . . . 9 ((((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
3936, 38sylan 583 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
40 mulid2 10633 . . . . . . . . 9 (𝐷 ∈ ℂ → (1 · 𝐷) = 𝐷)
4140adantl 485 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 · 𝐷) = 𝐷)
4233, 39, 413eqtr3d 2844 . . . . . . 7 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4326, 28, 42syl2anc 587 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
44433adantr1 1166 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4522, 44sylan9eqr 2858 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = 𝐷)
46 simplr2 1213 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → 𝐷 ∈ (𝐴[,]𝐵))
4745, 46eqeltrd 2893 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
48 iccss2 12800 . . . . . . . 8 ((𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
4948adantl 485 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5049ancom2s 649 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
51503adantr3 1168 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5251adantr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
539, 7jca 515 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
54533adantr3 1168 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
5554, 12jca 515 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
56 iirev 23537 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
5723, 56sseldi 3916 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℝ)
5857recnd 10662 . . . . . . . . . . . . . . 15 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℂ)
59 recn 10620 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
60 mulcl 10614 . . . . . . . . . . . . . . 15 (((1 − 𝑇) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6158, 59, 60syl2anr 599 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6261adantll 713 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
63 recn 10620 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
64 mulcl 10614 . . . . . . . . . . . . . . 15 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝑇 · 𝐷) ∈ ℂ)
6525, 63, 64syl2anr 599 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6665adantlr 714 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6762, 66addcomd 10835 . . . . . . . . . . . 12 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
68673adantl3 1165 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
69 nncan 10908 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
7029, 69mpan 689 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (1 − (1 − 𝑇)) = 𝑇)
7170eqcomd 2807 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → 𝑇 = (1 − (1 − 𝑇)))
7271oveq1d 7154 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (𝑇 · 𝐷) = ((1 − (1 − 𝑇)) · 𝐷))
7372oveq1d 7154 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7425, 73syl 17 . . . . . . . . . . . 12 (𝑇 ∈ (0[,]1) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7574adantl 485 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7668, 75eqtrd 2836 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
77 lincmb01cmp 12877 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7856, 77sylan2 595 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7976, 78eqeltrd 2893 . . . . . . . . 9 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8079ex 416 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
81803expa 1115 . . . . . . 7 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
8281imp 410 . . . . . 6 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8382an32s 651 . . . . 5 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8455, 83sylan 583 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8552, 84sseldd 3919 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
867, 9lttri4d 10774 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
87863adantr3 1168 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
8820, 47, 85, 87mpjao3dan 1428 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
8988ex 416 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2112  wss 3884   class class class wbr 5033  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cmin 10863  [,]cicc 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-rp 12382  df-icc 12737
This theorem is referenced by:  reparphti  23605
  Copyright terms: Public domain W3C validator