MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccvx Structured version   Visualization version   GIF version

Theorem icccvx 23028
Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
icccvx ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))

Proof of Theorem icccvx
StepHypRef Expression
1 iccss2 12446 . . . . . . 7 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
21adantl 473 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
323adantr3 1212 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
43adantr 472 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
5 iccssre 12457 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
65sselda 3761 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantrr 708 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ)
85sselda 3761 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ)
98adantrl 707 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐷 ∈ ℝ)
107, 9jca 507 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
11103adantr3 1212 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
12 simpr3 1252 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
1311, 12jca 507 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
14 lincmb01cmp 12522 . . . . . . . . 9 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1514ex 401 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
16153expa 1147 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
1716imp 395 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1817an32s 642 . . . . 5 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1913, 18sylan 575 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
204, 19sseldd 3762 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
21 oveq2 6850 . . . . . 6 (𝐶 = 𝐷 → ((1 − 𝑇) · 𝐶) = ((1 − 𝑇) · 𝐷))
2221oveq1d 6857 . . . . 5 (𝐶 = 𝐷 → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
23 unitssre 12526 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
2423sseli 3757 . . . . . . . . 9 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
2524recnd 10322 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
2625ad2antll 720 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
278recnd 10322 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℂ)
2827adantrr 708 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝐷 ∈ ℂ)
29 ax-1cn 10247 . . . . . . . . . . 11 1 ∈ ℂ
30 npcan 10544 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3129, 30mpan 681 . . . . . . . . . 10 (𝑇 ∈ ℂ → ((1 − 𝑇) + 𝑇) = 1)
3231adantr 472 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3332oveq1d 6857 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (1 · 𝐷))
34 subcl 10534 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
3529, 34mpan 681 . . . . . . . . . 10 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
3635ancri 545 . . . . . . . . 9 (𝑇 ∈ ℂ → ((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ))
37 adddir 10284 . . . . . . . . . 10 (((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
38373expa 1147 . . . . . . . . 9 ((((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
3936, 38sylan 575 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
40 mulid2 10292 . . . . . . . . 9 (𝐷 ∈ ℂ → (1 · 𝐷) = 𝐷)
4140adantl 473 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 · 𝐷) = 𝐷)
4233, 39, 413eqtr3d 2807 . . . . . . 7 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4326, 28, 42syl2anc 579 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
44433adantr1 1210 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4522, 44sylan9eqr 2821 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = 𝐷)
46 simplr2 1277 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → 𝐷 ∈ (𝐴[,]𝐵))
4745, 46eqeltrd 2844 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
48 iccss2 12446 . . . . . . . 8 ((𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
4948adantl 473 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5049ancom2s 640 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
51503adantr3 1212 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5251adantr 472 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
539, 7jca 507 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
54533adantr3 1212 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
5554, 12jca 507 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
56 iirev 23007 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
5723, 56sseldi 3759 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℝ)
5857recnd 10322 . . . . . . . . . . . . . . 15 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℂ)
59 recn 10279 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
60 mulcl 10273 . . . . . . . . . . . . . . 15 (((1 − 𝑇) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6158, 59, 60syl2anr 590 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6261adantll 705 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
63 recn 10279 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
64 mulcl 10273 . . . . . . . . . . . . . . 15 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝑇 · 𝐷) ∈ ℂ)
6525, 63, 64syl2anr 590 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6665adantlr 706 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6762, 66addcomd 10492 . . . . . . . . . . . 12 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
68673adantl3 1209 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
69 nncan 10564 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
7029, 69mpan 681 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (1 − (1 − 𝑇)) = 𝑇)
7170eqcomd 2771 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → 𝑇 = (1 − (1 − 𝑇)))
7271oveq1d 6857 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (𝑇 · 𝐷) = ((1 − (1 − 𝑇)) · 𝐷))
7372oveq1d 6857 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7425, 73syl 17 . . . . . . . . . . . 12 (𝑇 ∈ (0[,]1) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7574adantl 473 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7668, 75eqtrd 2799 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
77 lincmb01cmp 12522 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7856, 77sylan2 586 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7976, 78eqeltrd 2844 . . . . . . . . 9 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8079ex 401 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
81803expa 1147 . . . . . . 7 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
8281imp 395 . . . . . 6 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8382an32s 642 . . . . 5 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8455, 83sylan 575 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8552, 84sseldd 3762 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
867, 9lttri4d 10432 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
87863adantr3 1212 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
8820, 47, 85, 87mpjao3dan 1556 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
8988ex 401 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  wss 3732   class class class wbr 4809  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cmin 10520  [,]cicc 12380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-rp 12029  df-icc 12384
This theorem is referenced by:  reparphti  23075
  Copyright terms: Public domain W3C validator