Step | Hyp | Ref
| Expression |
1 | | imasmnd.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | imasmnd.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | imasmnd.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
4 | | imasmnd2.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
5 | 1, 2, 3, 4 | imasbas 17140 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
6 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (+g‘𝑈) = (+g‘𝑈)) |
7 | | imasmnd.e |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
8 | | imasmnd.p |
. . . . 5
⊢ + =
(+g‘𝑅) |
9 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑈) = (+g‘𝑈) |
10 | | imasmnd2.1 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
11 | 10 | 3expb 1118 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
12 | 11 | caovclg 7442 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 + 𝑞) ∈ 𝑉) |
13 | 3, 7, 1, 2, 4, 8, 9, 12 | imasaddf 17161 |
. . . 4
⊢ (𝜑 → (+g‘𝑈):(𝐵 × 𝐵)⟶𝐵) |
14 | | fovrn 7420 |
. . . 4
⊢
(((+g‘𝑈):(𝐵 × 𝐵)⟶𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(+g‘𝑈)𝑣) ∈ 𝐵) |
15 | 13, 14 | syl3an1 1161 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(+g‘𝑈)𝑣) ∈ 𝐵) |
16 | | forn 6675 |
. . . . . . . . . 10
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
17 | 3, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 = 𝐵) |
18 | 17 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵)) |
19 | 17 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵)) |
20 | 17 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵)) |
21 | 18, 19, 20 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
22 | | fofn 6674 |
. . . . . . . . 9
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) |
23 | 3, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝑉) |
24 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) |
25 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣)) |
26 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) |
27 | 24, 25, 26 | 3anbi123d 1434 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
28 | 23, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
29 | 21, 28 | bitr3d 280 |
. . . . . 6
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) |
30 | | 3reeanv 3293 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) |
31 | 29, 30 | bitr4di 288 |
. . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤))) |
32 | | imasmnd2.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) |
33 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝜑) |
34 | 10 | 3adant3r3 1182 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
35 | | simpr3 1194 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) |
36 | 3, 7, 1, 2, 4, 8, 9 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) + 𝑧))) |
37 | 33, 34, 35, 36 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) + 𝑧))) |
38 | | simpr1 1192 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
39 | 12 | caovclg 7442 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) |
40 | 39 | 3adantr1 1167 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) |
41 | 3, 7, 1, 2, 4, 8, 9 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) |
42 | 33, 38, 40, 41 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) |
43 | 32, 37, 42 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧)))) |
44 | 3, 7, 1, 2, 4, 8, 9 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
45 | 44 | 3adant3r3 1182 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
46 | 45 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 + 𝑦))(+g‘𝑈)(𝐹‘𝑧))) |
47 | 3, 7, 1, 2, 4, 8, 9 | imasaddval 17160 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
48 | 47 | 3adant3r1 1180 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
49 | 48 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘(𝑦 + 𝑧)))) |
50 | 43, 46, 49 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)))) |
51 | | simp1 1134 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑥) = 𝑢) |
52 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑦) = 𝑣) |
53 | 51, 52 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝑢(+g‘𝑈)𝑣)) |
54 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) = 𝑤) |
55 | 53, 54 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤)) |
56 | 52, 54 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝑣(+g‘𝑈)𝑤)) |
57 | 51, 56 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))) |
58 | 55, 57 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(+g‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(+g‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) |
59 | 50, 58 | syl5ibcom 244 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) |
60 | 59 | 3exp2 1352 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))))))) |
61 | 60 | imp32 418 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))))) |
62 | 61 | rexlimdv 3211 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) |
63 | 62 | rexlimdvva 3222 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) |
64 | 31, 63 | sylbid 239 |
. . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤)))) |
65 | 64 | imp 406 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑈)𝑣)(+g‘𝑈)𝑤) = (𝑢(+g‘𝑈)(𝑣(+g‘𝑈)𝑤))) |
66 | | fof 6672 |
. . . . 5
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
67 | 3, 66 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
68 | | imasmnd2.3 |
. . . 4
⊢ (𝜑 → 0 ∈ 𝑉) |
69 | 67, 68 | ffvelrnd 6944 |
. . 3
⊢ (𝜑 → (𝐹‘ 0 ) ∈ 𝐵) |
70 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) |
71 | 18, 70 | bitr3d 280 |
. . . . 5
⊢ (𝜑 → (𝑢 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) |
72 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝜑) |
73 | 68 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑉) |
74 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
75 | 3, 7, 1, 2, 4, 8, 9 | imasaddval 17160 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘( 0 + 𝑥))) |
76 | 72, 73, 74, 75 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘( 0 + 𝑥))) |
77 | | imasmnd2.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) |
78 | 76, 77 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘𝑥)) |
79 | | oveq2 7263 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → ((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = ((𝐹‘ 0
)(+g‘𝑈)𝑢)) |
80 | | id 22 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → (𝐹‘𝑥) = 𝑢) |
81 | 79, 80 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑢 → (((𝐹‘ 0
)(+g‘𝑈)(𝐹‘𝑥)) = (𝐹‘𝑥) ↔ ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) |
82 | 78, 81 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥) = 𝑢 → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) |
83 | 82 | rexlimdva 3212 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) |
84 | 71, 83 | sylbid 239 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐵 → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢)) |
85 | 84 | imp 406 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → ((𝐹‘ 0
)(+g‘𝑈)𝑢) = 𝑢) |
86 | 3, 7, 1, 2, 4, 8, 9 | imasaddval 17160 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 0 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘ 0 )) = (𝐹‘(𝑥 + 0 ))) |
87 | 73, 86 | mpd3an3 1460 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘ 0 )) = (𝐹‘(𝑥 + 0 ))) |
88 | | imasmnd2.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹‘𝑥)) |
89 | 87, 88 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘ 0 )) = (𝐹‘𝑥)) |
90 | | oveq1 7262 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑢 → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘ 0 )) = (𝑢(+g‘𝑈)(𝐹‘ 0 ))) |
91 | 90, 80 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑢 → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘ 0 )) = (𝐹‘𝑥) ↔ (𝑢(+g‘𝑈)(𝐹‘ 0 )) = 𝑢)) |
92 | 89, 91 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥) = 𝑢 → (𝑢(+g‘𝑈)(𝐹‘ 0 )) = 𝑢)) |
93 | 92 | rexlimdva 3212 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 → (𝑢(+g‘𝑈)(𝐹‘ 0 )) = 𝑢)) |
94 | 71, 93 | sylbid 239 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐵 → (𝑢(+g‘𝑈)(𝐹‘ 0 )) = 𝑢)) |
95 | 94 | imp 406 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → (𝑢(+g‘𝑈)(𝐹‘ 0 )) = 𝑢) |
96 | 5, 6, 15, 65, 69, 85, 95 | ismndd 18322 |
. 2
⊢ (𝜑 → 𝑈 ∈ Mnd) |
97 | 5, 6, 69, 85, 95 | grpidd 18270 |
. 2
⊢ (𝜑 → (𝐹‘ 0 ) =
(0g‘𝑈)) |
98 | 96, 97 | jca 511 |
1
⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) =
(0g‘𝑈))) |