MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasmnd2 Structured version   Visualization version   GIF version

Theorem imasmnd2 17938
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmnd.u (𝜑𝑈 = (𝐹s 𝑅))
imasmnd.v (𝜑𝑉 = (Base‘𝑅))
imasmnd.p + = (+g𝑅)
imasmnd.f (𝜑𝐹:𝑉onto𝐵)
imasmnd.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmnd2.r (𝜑𝑅𝑊)
imasmnd2.1 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
imasmnd2.2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
imasmnd2.3 (𝜑0𝑉)
imasmnd2.4 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
imasmnd2.5 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))
Assertion
Ref Expression
imasmnd2 (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝,𝑥,𝑦, +   𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   0 ,𝑝,𝑞,𝑥   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑎,𝑏)   + (𝑧,𝑎,𝑏)   𝑅(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑞,𝑝,𝑎,𝑏)   0 (𝑦,𝑧,𝑎,𝑏)

Proof of Theorem imasmnd2
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmnd.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasmnd.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasmnd.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imasmnd2.r . . . 4 (𝜑𝑅𝑊)
51, 2, 3, 4imasbas 16777 . . 3 (𝜑𝐵 = (Base‘𝑈))
6 eqidd 2825 . . 3 (𝜑 → (+g𝑈) = (+g𝑈))
7 imasmnd.e . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
8 imasmnd.p . . . . 5 + = (+g𝑅)
9 eqid 2824 . . . . 5 (+g𝑈) = (+g𝑈)
10 imasmnd2.1 . . . . . . 7 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
11103expb 1114 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
1211caovclg 7333 . . . . 5 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
133, 7, 1, 2, 4, 8, 9, 12imasaddf 16798 . . . 4 (𝜑 → (+g𝑈):(𝐵 × 𝐵)⟶𝐵)
14 fovrn 7311 . . . 4 (((+g𝑈):(𝐵 × 𝐵)⟶𝐵𝑢𝐵𝑣𝐵) → (𝑢(+g𝑈)𝑣) ∈ 𝐵)
1513, 14syl3an1 1157 . . 3 ((𝜑𝑢𝐵𝑣𝐵) → (𝑢(+g𝑈)𝑣) ∈ 𝐵)
16 forn 6589 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
173, 16syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝐵)
1817eleq2d 2902 . . . . . . . 8 (𝜑 → (𝑢 ∈ ran 𝐹𝑢𝐵))
1917eleq2d 2902 . . . . . . . 8 (𝜑 → (𝑣 ∈ ran 𝐹𝑣𝐵))
2017eleq2d 2902 . . . . . . . 8 (𝜑 → (𝑤 ∈ ran 𝐹𝑤𝐵))
2118, 19, 203anbi123d 1429 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (𝑢𝐵𝑣𝐵𝑤𝐵)))
22 fofn 6588 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
233, 22syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
24 fvelrnb 6722 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
25 fvelrnb 6722 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦𝑉 (𝐹𝑦) = 𝑣))
26 fvelrnb 6722 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
2724, 25, 263anbi123d 1429 . . . . . . . 8 (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
2823, 27syl 17 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
2921, 28bitr3d 282 . . . . . 6 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
30 3reeanv 3373 . . . . . 6 (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
3129, 30syl6bbr 290 . . . . 5 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤)))
32 imasmnd2.2 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
33 simpl 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝜑)
34103adant3r3 1178 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
35 simpr3 1190 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
363, 7, 1, 2, 4, 8, 9imasaddval 16797 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) + 𝑧)))
3733, 34, 35, 36syl3anc 1365 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) + 𝑧)))
38 simpr1 1188 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥𝑉)
3912caovclg 7333 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
40393adantr1 1163 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
413, 7, 1, 2, 4, 8, 9imasaddval 16797 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
4233, 38, 40, 41syl3anc 1365 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
4332, 37, 423eqtr4d 2870 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))))
443, 7, 1, 2, 4, 8, 9imasaddval 16797 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
45443adant3r3 1178 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
4645oveq1d 7166 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 + 𝑦))(+g𝑈)(𝐹𝑧)))
473, 7, 1, 2, 4, 8, 9imasaddval 16797 . . . . . . . . . . . . 13 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
48473adant3r1 1176 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
4948oveq2d 7167 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = ((𝐹𝑥)(+g𝑈)(𝐹‘(𝑦 + 𝑧))))
5043, 46, 493eqtr4d 2870 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))))
51 simp1 1130 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑥) = 𝑢)
52 simp2 1131 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑦) = 𝑣)
5351, 52oveq12d 7169 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝑢(+g𝑈)𝑣))
54 simp3 1132 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
5553, 54oveq12d 7169 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤))
5652, 54oveq12d 7169 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝑣(+g𝑈)𝑤))
5751, 56oveq12d 7169 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))
5855, 57eqeq12d 2840 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(+g𝑈)(𝐹𝑦))(+g𝑈)(𝐹𝑧)) = ((𝐹𝑥)(+g𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) ↔ ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
5950, 58syl5ibcom 246 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
60593exp2 1348 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))))))
6160imp32 419 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))))
6261rexlimdv 3287 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
6362rexlimdvva 3298 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
6431, 63sylbid 241 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤))))
6564imp 407 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑈)𝑣)(+g𝑈)𝑤) = (𝑢(+g𝑈)(𝑣(+g𝑈)𝑤)))
66 fof 6586 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
673, 66syl 17 . . . 4 (𝜑𝐹:𝑉𝐵)
68 imasmnd2.3 . . . 4 (𝜑0𝑉)
6967, 68ffvelrnd 6847 . . 3 (𝜑 → (𝐹0 ) ∈ 𝐵)
7023, 24syl 17 . . . . . 6 (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
7118, 70bitr3d 282 . . . . 5 (𝜑 → (𝑢𝐵 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
72 simpl 483 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝜑)
7368adantr 481 . . . . . . . . 9 ((𝜑𝑥𝑉) → 0𝑉)
74 simpr 485 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑥𝑉)
753, 7, 1, 2, 4, 8, 9imasaddval 16797 . . . . . . . . 9 ((𝜑0𝑉𝑥𝑉) → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹‘( 0 + 𝑥)))
7672, 73, 74, 75syl3anc 1365 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹‘( 0 + 𝑥)))
77 imasmnd2.4 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
7876, 77eqtrd 2860 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹𝑥))
79 oveq2 7159 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹0 )(+g𝑈)(𝐹𝑥)) = ((𝐹0 )(+g𝑈)𝑢))
80 id 22 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → (𝐹𝑥) = 𝑢)
8179, 80eqeq12d 2840 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹0 )(+g𝑈)(𝐹𝑥)) = (𝐹𝑥) ↔ ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
8278, 81syl5ibcom 246 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
8382rexlimdva 3288 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
8471, 83sylbid 241 . . . 4 (𝜑 → (𝑢𝐵 → ((𝐹0 )(+g𝑈)𝑢) = 𝑢))
8584imp 407 . . 3 ((𝜑𝑢𝐵) → ((𝐹0 )(+g𝑈)𝑢) = 𝑢)
863, 7, 1, 2, 4, 8, 9imasaddval 16797 . . . . . . . . 9 ((𝜑𝑥𝑉0𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹0 )) = (𝐹‘(𝑥 + 0 )))
8773, 86mpd3an3 1455 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹0 )) = (𝐹‘(𝑥 + 0 )))
88 imasmnd2.5 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))
8987, 88eqtrd 2860 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹0 )) = (𝐹𝑥))
90 oveq1 7158 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹𝑥)(+g𝑈)(𝐹0 )) = (𝑢(+g𝑈)(𝐹0 )))
9190, 80eqeq12d 2840 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹𝑥)(+g𝑈)(𝐹0 )) = (𝐹𝑥) ↔ (𝑢(+g𝑈)(𝐹0 )) = 𝑢))
9289, 91syl5ibcom 246 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → (𝑢(+g𝑈)(𝐹0 )) = 𝑢))
9392rexlimdva 3288 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → (𝑢(+g𝑈)(𝐹0 )) = 𝑢))
9471, 93sylbid 241 . . . 4 (𝜑 → (𝑢𝐵 → (𝑢(+g𝑈)(𝐹0 )) = 𝑢))
9594imp 407 . . 3 ((𝜑𝑢𝐵) → (𝑢(+g𝑈)(𝐹0 )) = 𝑢)
965, 6, 15, 65, 69, 85, 95ismndd 17923 . 2 (𝜑𝑈 ∈ Mnd)
975, 6, 69, 85, 95grpidd 17872 . 2 (𝜑 → (𝐹0 ) = (0g𝑈))
9896, 97jca 512 1 (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wrex 3143   × cxp 5551  ran crn 5554   Fn wfn 6346  wf 6347  ontowfo 6349  cfv 6351  (class class class)co 7151  Basecbs 16475  +gcplusg 16557  0gc0g 16705  s cimas 16769  Mndcmnd 17902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-imas 16773  df-mgm 17844  df-sgrp 17892  df-mnd 17903
This theorem is referenced by:  imasmnd  17939
  Copyright terms: Public domain W3C validator