Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3 Structured version   Visualization version   GIF version

Theorem erngdvlem3 40495
Description: Lemma for eringring 40497. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
ernggrp.h 𝐻 = (LHypβ€˜πΎ)
ernggrp.d 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
erngdv.b 𝐡 = (Baseβ€˜πΎ)
erngdv.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
erngdv.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
erngdv.p 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“))))
erngdv.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
erngdv.i 𝐼 = (π‘Ž ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘Žβ€˜π‘“)))
erngrnglem.m + = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (π‘Ž ∘ 𝑏))
Assertion
Ref Expression
erngdvlem3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Ring)
Distinct variable groups:   𝐡,𝑓   π‘Ž,𝑏,𝐸   𝑓,π‘Ž,𝐾,𝑏   𝑓,𝐻   𝑇,π‘Ž,𝑏,𝑓   π‘Š,π‘Ž,𝑏,𝑓
Allowed substitution hints:   𝐡(π‘Ž,𝑏)   𝐷(𝑓,π‘Ž,𝑏)   𝑃(𝑓,π‘Ž,𝑏)   + (𝑓,π‘Ž,𝑏)   𝐸(𝑓)   𝐻(π‘Ž,𝑏)   𝐼(𝑓,π‘Ž,𝑏)   0 (𝑓,π‘Ž,𝑏)

Proof of Theorem erngdvlem3
Dummy variables 𝑑 𝑠 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 erngdv.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 erngdv.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
4 ernggrp.d . . . 4 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
5 eqid 2728 . . . 4 (Baseβ€˜π·) = (Baseβ€˜π·)
61, 2, 3, 4, 5erngbase 40306 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π·) = 𝐸)
76eqcomd 2734 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐸 = (Baseβ€˜π·))
8 erngdv.p . . 3 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“))))
9 eqid 2728 . . . 4 (+gβ€˜π·) = (+gβ€˜π·)
101, 2, 3, 4, 9erngfplus 40307 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (+gβ€˜π·) = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“)))))
118, 10eqtr4id 2787 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑃 = (+gβ€˜π·))
12 erngrnglem.m . . 3 + = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (π‘Ž ∘ 𝑏))
13 eqid 2728 . . . 4 (.rβ€˜π·) = (.rβ€˜π·)
141, 2, 3, 4, 13erngfmul 40310 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (.rβ€˜π·) = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (π‘Ž ∘ 𝑏)))
1512, 14eqtr4id 2787 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ + = (.rβ€˜π·))
16 erngdv.b . . 3 𝐡 = (Baseβ€˜πΎ)
17 erngdv.o . . 3 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
18 erngdv.i . . 3 𝐼 = (π‘Ž ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘Žβ€˜π‘“)))
191, 4, 16, 2, 3, 8, 17, 18erngdvlem1 40493 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Grp)
2015oveqd 7443 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠 + 𝑑) = (𝑠(.rβ€˜π·)𝑑))
21203ad2ant1 1130 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠 + 𝑑) = (𝑠(.rβ€˜π·)𝑑))
221, 2, 3, 4, 13erngmul 40311 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑑) = (𝑠 ∘ 𝑑))
23223impb 1112 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠(.rβ€˜π·)𝑑) = (𝑠 ∘ 𝑑))
2421, 23eqtrd 2768 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠 + 𝑑) = (𝑠 ∘ 𝑑))
251, 3tendococl 40277 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠 ∘ 𝑑) ∈ 𝐸)
2624, 25eqeltrd 2829 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠 + 𝑑) ∈ 𝐸)
27 coass 6274 . . 3 ((𝑠 ∘ 𝑑) ∘ 𝑒) = (𝑠 ∘ (𝑑 ∘ 𝑒))
2815oveqd 7443 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((𝑠 + 𝑑) + 𝑒) = ((𝑠 + 𝑑)(.rβ€˜π·)𝑒))
2928adantr 479 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑑) + 𝑒) = ((𝑠 + 𝑑)(.rβ€˜π·)𝑒))
30 simpl 481 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
31263adant3r3 1181 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + 𝑑) ∈ 𝐸)
32 simpr3 1193 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ 𝑒 ∈ 𝐸)
331, 2, 3, 4, 13erngmul 40311 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑠 + 𝑑) ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑑)(.rβ€˜π·)𝑒) = ((𝑠 + 𝑑) ∘ 𝑒))
3430, 31, 32, 33syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑑)(.rβ€˜π·)𝑒) = ((𝑠 + 𝑑) ∘ 𝑒))
3515oveqdr 7454 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + 𝑑) = (𝑠(.rβ€˜π·)𝑑))
36223adantr3 1168 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑑) = (𝑠 ∘ 𝑑))
3735, 36eqtrd 2768 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + 𝑑) = (𝑠 ∘ 𝑑))
3837coeq1d 5868 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑑) ∘ 𝑒) = ((𝑠 ∘ 𝑑) ∘ 𝑒))
3929, 34, 383eqtrd 2772 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑑) + 𝑒) = ((𝑠 ∘ 𝑑) ∘ 𝑒))
4015oveqd 7443 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠 + (𝑑 + 𝑒)) = (𝑠(.rβ€˜π·)(𝑑 + 𝑒)))
4140adantr 479 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + (𝑑 + 𝑒)) = (𝑠(.rβ€˜π·)(𝑑 + 𝑒)))
42 simpr1 1191 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ 𝑠 ∈ 𝐸)
4315oveqdr 7454 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑 + 𝑒) = (𝑑(.rβ€˜π·)𝑒))
441, 2, 3, 4, 13erngmul 40311 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑(.rβ€˜π·)𝑒) = (𝑑 ∘ 𝑒))
45443adantr1 1166 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑(.rβ€˜π·)𝑒) = (𝑑 ∘ 𝑒))
4643, 45eqtrd 2768 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑 + 𝑒) = (𝑑 ∘ 𝑒))
471, 3tendococl 40277 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸) β†’ (𝑑 ∘ 𝑒) ∈ 𝐸)
48473adant3r1 1179 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑 ∘ 𝑒) ∈ 𝐸)
4946, 48eqeltrd 2829 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑 + 𝑒) ∈ 𝐸)
501, 2, 3, 4, 13erngmul 40311 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ (𝑑 + 𝑒) ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑 + 𝑒)) = (𝑠 ∘ (𝑑 + 𝑒)))
5130, 42, 49, 50syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑 + 𝑒)) = (𝑠 ∘ (𝑑 + 𝑒)))
5246coeq2d 5869 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 ∘ (𝑑 + 𝑒)) = (𝑠 ∘ (𝑑 ∘ 𝑒)))
5341, 51, 523eqtrd 2772 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + (𝑑 + 𝑒)) = (𝑠 ∘ (𝑑 ∘ 𝑒)))
5427, 39, 533eqtr4a 2794 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑑) + 𝑒) = (𝑠 + (𝑑 + 𝑒)))
551, 2, 3, 8tendodi1 40289 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 ∘ (𝑑𝑃𝑒)) = ((𝑠 ∘ 𝑑)𝑃(𝑠 ∘ 𝑒)))
5615oveqd 7443 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠 + (𝑑𝑃𝑒)) = (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)))
5756adantr 479 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + (𝑑𝑃𝑒)) = (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)))
581, 2, 3, 8tendoplcl 40286 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸) β†’ (𝑑𝑃𝑒) ∈ 𝐸)
59583adant3r1 1179 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑑𝑃𝑒) ∈ 𝐸)
601, 2, 3, 4, 13erngmul 40311 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ (𝑑𝑃𝑒) ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)) = (𝑠 ∘ (𝑑𝑃𝑒)))
6130, 42, 59, 60syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)(𝑑𝑃𝑒)) = (𝑠 ∘ (𝑑𝑃𝑒)))
6257, 61eqtrd 2768 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + (𝑑𝑃𝑒)) = (𝑠 ∘ (𝑑𝑃𝑒)))
6315oveqdr 7454 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + 𝑒) = (𝑠(.rβ€˜π·)𝑒))
641, 2, 3, 4, 13erngmul 40311 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑒) = (𝑠 ∘ 𝑒))
65643adantr2 1167 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)𝑒) = (𝑠 ∘ 𝑒))
6663, 65eqtrd 2768 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + 𝑒) = (𝑠 ∘ 𝑒))
6737, 66oveq12d 7444 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑑)𝑃(𝑠 + 𝑒)) = ((𝑠 ∘ 𝑑)𝑃(𝑠 ∘ 𝑒)))
6855, 62, 673eqtr4d 2778 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠 + (𝑑𝑃𝑒)) = ((𝑠 + 𝑑)𝑃(𝑠 + 𝑒)))
691, 2, 3, 8tendodi2 40290 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑) ∘ 𝑒) = ((𝑠 ∘ 𝑒)𝑃(𝑑 ∘ 𝑒)))
7015oveqd 7443 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((𝑠𝑃𝑑) + 𝑒) = ((𝑠𝑃𝑑)(.rβ€˜π·)𝑒))
7170adantr 479 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑) + 𝑒) = ((𝑠𝑃𝑑)(.rβ€˜π·)𝑒))
721, 2, 3, 8tendoplcl 40286 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠𝑃𝑑) ∈ 𝐸)
73723adant3r3 1181 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (𝑠𝑃𝑑) ∈ 𝐸)
741, 2, 3, 4, 13erngmul 40311 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑠𝑃𝑑) ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑)(.rβ€˜π·)𝑒) = ((𝑠𝑃𝑑) ∘ 𝑒))
7530, 73, 32, 74syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑)(.rβ€˜π·)𝑒) = ((𝑠𝑃𝑑) ∘ 𝑒))
7671, 75eqtrd 2768 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑) + 𝑒) = ((𝑠𝑃𝑑) ∘ 𝑒))
7766, 46oveq12d 7444 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠 + 𝑒)𝑃(𝑑 + 𝑒)) = ((𝑠 ∘ 𝑒)𝑃(𝑑 ∘ 𝑒)))
7869, 76, 773eqtr4d 2778 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ ((𝑠𝑃𝑑) + 𝑒) = ((𝑠 + 𝑒)𝑃(𝑑 + 𝑒)))
791, 2, 3tendoidcl 40274 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
8015oveqd 7443 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (( I β†Ύ 𝑇) + 𝑠) = (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠))
8180adantr 479 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇) + 𝑠) = (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠))
82 simpl 481 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
8379adantr 479 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
84 simpr 483 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ 𝑠 ∈ 𝐸)
851, 2, 3, 4, 13erngmul 40311 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (( I β†Ύ 𝑇) ∈ 𝐸 ∧ 𝑠 ∈ 𝐸)) β†’ (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠) = (( I β†Ύ 𝑇) ∘ 𝑠))
8682, 83, 84, 85syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇)(.rβ€˜π·)𝑠) = (( I β†Ύ 𝑇) ∘ 𝑠))
871, 2, 3tendo1mul 40275 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇) ∘ 𝑠) = 𝑠)
8881, 86, 873eqtrd 2772 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (( I β†Ύ 𝑇) + 𝑠) = 𝑠)
8915oveqd 7443 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑠 + ( I β†Ύ 𝑇)) = (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)))
9089adantr 479 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠 + ( I β†Ύ 𝑇)) = (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)))
911, 2, 3, 4, 13erngmul 40311 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ ( I β†Ύ 𝑇) ∈ 𝐸)) β†’ (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)) = (𝑠 ∘ ( I β†Ύ 𝑇)))
9282, 84, 83, 91syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠(.rβ€˜π·)( I β†Ύ 𝑇)) = (𝑠 ∘ ( I β†Ύ 𝑇)))
931, 2, 3tendo1mulr 40276 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠 ∘ ( I β†Ύ 𝑇)) = 𝑠)
9490, 92, 933eqtrd 2772 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ (𝑠 + ( I β†Ύ 𝑇)) = 𝑠)
957, 11, 15, 19, 26, 54, 68, 78, 79, 88, 94isringd 20234 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ↦ cmpt 5235   I cid 5579  β—‘ccnv 5681   β†Ύ cres 5684   ∘ ccom 5686  β€˜cfv 6553  (class class class)co 7426   ∈ cmpo 7428  Basecbs 17187  +gcplusg 17240  .rcmulr 17241  Ringcrg 20180  HLchlt 38854  LHypclh 39489  LTrncltrn 39606  TEndoctendo 40257  EDRingcedring 40258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-riotaBAD 38457
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-undef 8285  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-0g 17430  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-mgp 20082  df-ring 20182  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005  df-lines 39006  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664  df-tendo 40260  df-edring 40262
This theorem is referenced by:  erngdvlem4  40496  eringring  40497
  Copyright terms: Public domain W3C validator