Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3 Structured version   Visualization version   GIF version

Theorem erngdvlem3 36946
Description: Lemma for eringring 36948. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
ernggrp.h 𝐻 = (LHyp‘𝐾)
ernggrp.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erngdv.b 𝐵 = (Base‘𝐾)
erngdv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngdv.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngdv.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
erngdv.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erngdv.i 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
Assertion
Ref Expression
erngdvlem3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   + (𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   0 (𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem3
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 erngdv.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngdv.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2765 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase 36757 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2771 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 eqid 2765 . . . 4 (+g𝐷) = (+g𝐷)
91, 2, 3, 4, 8erngfplus 36758 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
10 erngdv.p . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
119, 10syl6reqr 2818 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
12 eqid 2765 . . . 4 (.r𝐷) = (.r𝐷)
131, 2, 3, 4, 12erngfmul 36761 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏)))
14 erngrnglem.m . . 3 + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
1513, 14syl6reqr 2818 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (.r𝐷))
16 erngdv.b . . 3 𝐵 = (Base‘𝐾)
17 erngdv.o . . 3 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
18 erngdv.i . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
191, 4, 16, 2, 3, 10, 17, 18erngdvlem1 36944 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
2015oveqd 6859 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
21203ad2ant1 1163 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
221, 2, 3, 4, 12erngmul 36762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
23223impb 1143 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
2421, 23eqtrd 2799 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) = (𝑠𝑡))
251, 3tendococl 36728 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
2624, 25eqeltrd 2844 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) ∈ 𝐸)
27 coass 5840 . . 3 ((𝑠𝑡) ∘ 𝑢) = (𝑠 ∘ (𝑡𝑢))
2815oveqd 6859 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r𝐷)𝑢))
2928adantr 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r𝐷)𝑢))
30 simpl 474 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31263adant3r3 1235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) ∈ 𝐸)
32 simpr3 1252 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑢𝐸)
331, 2, 3, 4, 12erngmul 36762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 + 𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠 + 𝑡)(.r𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢))
3430, 31, 32, 33syl12anc 865 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡)(.r𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢))
3515oveqdr 6870 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
36223adantr3 1212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
3735, 36eqtrd 2799 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) = (𝑠𝑡))
3837coeq1d 5452 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) ∘ 𝑢) = ((𝑠𝑡) ∘ 𝑢))
3929, 34, 383eqtrd 2803 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠𝑡) ∘ 𝑢))
4015oveqd 6859 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r𝐷)(𝑡 + 𝑢)))
4140adantr 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r𝐷)(𝑡 + 𝑢)))
42 simpr1 1248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑠𝐸)
4315oveqdr 6870 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) = (𝑡(.r𝐷)𝑢))
441, 2, 3, 4, 12erngmul 36762 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑡𝑢))
45443adantr1 1210 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑡𝑢))
4643, 45eqtrd 2799 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) = (𝑡𝑢))
471, 3tendococl 36728 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑢) ∈ 𝐸)
48473adant3r1 1233 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑢) ∈ 𝐸)
4946, 48eqeltrd 2844 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) ∈ 𝐸)
501, 2, 3, 4, 12erngmul 36762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡 + 𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢)))
5130, 42, 49, 50syl12anc 865 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢)))
5246coeq2d 5453 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 ∘ (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡𝑢)))
5341, 51, 523eqtrd 2803 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡𝑢)))
5427, 39, 533eqtr4a 2825 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = (𝑠 + (𝑡 + 𝑢)))
551, 2, 3, 10tendodi1 36740 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 ∘ (𝑡𝑃𝑢)) = ((𝑠𝑡)𝑃(𝑠𝑢)))
5615oveqd 6859 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
5756adantr 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
581, 2, 3, 10tendoplcl 36737 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑃𝑢) ∈ 𝐸)
59583adant3r1 1233 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑃𝑢) ∈ 𝐸)
601, 2, 3, 4, 12erngmul 36762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑃𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6130, 42, 59, 60syl12anc 865 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6257, 61eqtrd 2799 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6315oveqdr 6870 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑢) = (𝑠(.r𝐷)𝑢))
641, 2, 3, 4, 12erngmul 36762 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑠𝑢))
65643adantr2 1211 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑠𝑢))
6663, 65eqtrd 2799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑢) = (𝑠𝑢))
6737, 66oveq12d 6860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢)) = ((𝑠𝑡)𝑃(𝑠𝑢)))
6855, 62, 673eqtr4d 2809 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢)))
691, 2, 3, 10tendodi2 36741 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) ∘ 𝑢) = ((𝑠𝑢)𝑃(𝑡𝑢)))
7015oveqd 6859 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
7170adantr 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
721, 2, 3, 10tendoplcl 36737 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) ∈ 𝐸)
73723adant3r3 1235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑃𝑡) ∈ 𝐸)
741, 2, 3, 4, 12erngmul 36762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑃𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7530, 73, 32, 74syl12anc 865 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7671, 75eqtrd 2799 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7766, 46oveq12d 6860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢)) = ((𝑠𝑢)𝑃(𝑡𝑢)))
7869, 76, 773eqtr4d 2809 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢)))
791, 2, 3tendoidcl 36725 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
8015oveqd 6859 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
8180adantr 472 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
82 simpl 474 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8379adantr 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
84 simpr 477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → 𝑠𝐸)
851, 2, 3, 4, 12erngmul 36762 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠))
8682, 83, 84, 85syl12anc 865 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠))
871, 2, 3tendo1mul 36726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) ∘ 𝑠) = 𝑠)
8881, 86, 873eqtrd 2803 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) + 𝑠) = 𝑠)
8915oveqd 6859 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
9089adantr 472 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
911, 2, 3, 4, 12erngmul 36762 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇)))
9282, 84, 83, 91syl12anc 865 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇)))
931, 2, 3tendo1mulr 36727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 ∘ ( I ↾ 𝑇)) = 𝑠)
9490, 92, 933eqtrd 2803 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 + ( I ↾ 𝑇)) = 𝑠)
957, 11, 15, 19, 26, 54, 68, 78, 79, 88, 94isringd 18852 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cmpt 4888   I cid 5184  ccnv 5276  cres 5279  ccom 5281  cfv 6068  (class class class)co 6842  cmpt2 6844  Basecbs 16130  +gcplusg 16214  .rcmulr 16215  Ringcrg 18814  HLchlt 35306  LHypclh 35940  LTrncltrn 36057  TEndoctendo 36708  EDRingcedring 36709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-riotaBAD 34909
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-undef 7602  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-plusg 16227  df-mulr 16228  df-0g 16368  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-p1 17306  df-lat 17312  df-clat 17374  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-mgp 18757  df-ring 18816  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307  df-llines 35454  df-lplanes 35455  df-lvols 35456  df-lines 35457  df-psubsp 35459  df-pmap 35460  df-padd 35752  df-lhyp 35944  df-laut 35945  df-ldil 36060  df-ltrn 36061  df-trl 36115  df-tendo 36711  df-edring 36713
This theorem is referenced by:  erngdvlem4  36947  eringring  36948
  Copyright terms: Public domain W3C validator