| Step | Hyp | Ref
| Expression |
| 1 | | ernggrp.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | erngdv.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 3 | | erngdv.e |
. . . 4
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 4 | | ernggrp.d |
. . . 4
⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
| 5 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 6 | 1, 2, 3, 4, 5 | erngbase 40803 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
| 7 | 6 | eqcomd 2743 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
| 8 | | erngdv.p |
. . 3
⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
| 9 | | eqid 2737 |
. . . 4
⊢
(+g‘𝐷) = (+g‘𝐷) |
| 10 | 1, 2, 3, 4, 9 | erngfplus 40804 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
| 11 | 8, 10 | eqtr4id 2796 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
| 12 | | erngrnglem.m |
. . 3
⊢ + = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏)) |
| 13 | | eqid 2737 |
. . . 4
⊢
(.r‘𝐷) = (.r‘𝐷) |
| 14 | 1, 2, 3, 4, 13 | erngfmul 40807 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (.r‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏))) |
| 15 | 12, 14 | eqtr4id 2796 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + =
(.r‘𝐷)) |
| 16 | | erngdv.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 17 | | erngdv.o |
. . 3
⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 18 | | erngdv.i |
. . 3
⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
| 19 | 1, 4, 16, 2, 3, 8,
17, 18 | erngdvlem1 40990 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
| 20 | 15 | oveqd 7448 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠 + 𝑡) = (𝑠(.r‘𝐷)𝑡)) |
| 21 | 20 | 3ad2ant1 1134 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠 + 𝑡) = (𝑠(.r‘𝐷)𝑡)) |
| 22 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑡) = (𝑠 ∘ 𝑡)) |
| 23 | 22 | 3impb 1115 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠(.r‘𝐷)𝑡) = (𝑠 ∘ 𝑡)) |
| 24 | 21, 23 | eqtrd 2777 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠 + 𝑡) = (𝑠 ∘ 𝑡)) |
| 25 | 1, 3 | tendococl 40774 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠 ∘ 𝑡) ∈ 𝐸) |
| 26 | 24, 25 | eqeltrd 2841 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠 + 𝑡) ∈ 𝐸) |
| 27 | | coass 6285 |
. . 3
⊢ ((𝑠 ∘ 𝑡) ∘ 𝑢) = (𝑠 ∘ (𝑡 ∘ 𝑢)) |
| 28 | 15 | oveqd 7448 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r‘𝐷)𝑢)) |
| 29 | 28 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r‘𝐷)𝑢)) |
| 30 | | simpl 482 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 31 | 26 | 3adant3r3 1185 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + 𝑡) ∈ 𝐸) |
| 32 | | simpr3 1197 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → 𝑢 ∈ 𝐸) |
| 33 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑠 + 𝑡) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑡)(.r‘𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢)) |
| 34 | 30, 31, 32, 33 | syl12anc 837 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑡)(.r‘𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢)) |
| 35 | 15 | oveqdr 7459 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + 𝑡) = (𝑠(.r‘𝐷)𝑡)) |
| 36 | 22 | 3adantr3 1172 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑡) = (𝑠 ∘ 𝑡)) |
| 37 | 35, 36 | eqtrd 2777 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + 𝑡) = (𝑠 ∘ 𝑡)) |
| 38 | 37 | coeq1d 5872 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑡) ∘ 𝑢) = ((𝑠 ∘ 𝑡) ∘ 𝑢)) |
| 39 | 29, 34, 38 | 3eqtrd 2781 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 ∘ 𝑡) ∘ 𝑢)) |
| 40 | 15 | oveqd 7448 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r‘𝐷)(𝑡 + 𝑢))) |
| 41 | 40 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r‘𝐷)(𝑡 + 𝑢))) |
| 42 | | simpr1 1195 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → 𝑠 ∈ 𝐸) |
| 43 | 15 | oveqdr 7459 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑡 + 𝑢) = (𝑡(.r‘𝐷)𝑢)) |
| 44 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑡(.r‘𝐷)𝑢) = (𝑡 ∘ 𝑢)) |
| 45 | 44 | 3adantr1 1170 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑡(.r‘𝐷)𝑢) = (𝑡 ∘ 𝑢)) |
| 46 | 43, 45 | eqtrd 2777 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑡 + 𝑢) = (𝑡 ∘ 𝑢)) |
| 47 | 1, 3 | tendococl 40774 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸) → (𝑡 ∘ 𝑢) ∈ 𝐸) |
| 48 | 47 | 3adant3r1 1183 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑡 ∘ 𝑢) ∈ 𝐸) |
| 49 | 46, 48 | eqeltrd 2841 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑡 + 𝑢) ∈ 𝐸) |
| 50 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ (𝑡 + 𝑢) ∈ 𝐸)) → (𝑠(.r‘𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢))) |
| 51 | 30, 42, 49, 50 | syl12anc 837 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠(.r‘𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢))) |
| 52 | 46 | coeq2d 5873 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 ∘ (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 ∘ 𝑢))) |
| 53 | 41, 51, 52 | 3eqtrd 2781 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 ∘ 𝑢))) |
| 54 | 27, 39, 53 | 3eqtr4a 2803 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑡) + 𝑢) = (𝑠 + (𝑡 + 𝑢))) |
| 55 | 1, 2, 3, 8 | tendodi1 40786 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 ∘ (𝑡𝑃𝑢)) = ((𝑠 ∘ 𝑡)𝑃(𝑠 ∘ 𝑢))) |
| 56 | 15 | oveqd 7448 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r‘𝐷)(𝑡𝑃𝑢))) |
| 57 | 56 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r‘𝐷)(𝑡𝑃𝑢))) |
| 58 | 1, 2, 3, 8 | tendoplcl 40783 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸) → (𝑡𝑃𝑢) ∈ 𝐸) |
| 59 | 58 | 3adant3r1 1183 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑡𝑃𝑢) ∈ 𝐸) |
| 60 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ (𝑡𝑃𝑢) ∈ 𝐸)) → (𝑠(.r‘𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢))) |
| 61 | 30, 42, 59, 60 | syl12anc 837 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠(.r‘𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢))) |
| 62 | 57, 61 | eqtrd 2777 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢))) |
| 63 | 15 | oveqdr 7459 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + 𝑢) = (𝑠(.r‘𝐷)𝑢)) |
| 64 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑢) = (𝑠 ∘ 𝑢)) |
| 65 | 64 | 3adantr2 1171 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑢) = (𝑠 ∘ 𝑢)) |
| 66 | 63, 65 | eqtrd 2777 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + 𝑢) = (𝑠 ∘ 𝑢)) |
| 67 | 37, 66 | oveq12d 7449 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢)) = ((𝑠 ∘ 𝑡)𝑃(𝑠 ∘ 𝑢))) |
| 68 | 55, 62, 67 | 3eqtr4d 2787 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢))) |
| 69 | 1, 2, 3, 8 | tendodi2 40787 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡) ∘ 𝑢) = ((𝑠 ∘ 𝑢)𝑃(𝑡 ∘ 𝑢))) |
| 70 | 15 | oveqd 7448 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r‘𝐷)𝑢)) |
| 71 | 70 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r‘𝐷)𝑢)) |
| 72 | 1, 2, 3, 8 | tendoplcl 40783 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) ∈ 𝐸) |
| 73 | 72 | 3adant3r3 1185 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (𝑠𝑃𝑡) ∈ 𝐸) |
| 74 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑠𝑃𝑡) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡)(.r‘𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢)) |
| 75 | 30, 73, 32, 74 | syl12anc 837 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡)(.r‘𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢)) |
| 76 | 71, 75 | eqtrd 2777 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢)) |
| 77 | 66, 46 | oveq12d 7449 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢)) = ((𝑠 ∘ 𝑢)𝑃(𝑡 ∘ 𝑢))) |
| 78 | 69, 76, 77 | 3eqtr4d 2787 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢))) |
| 79 | 1, 2, 3 | tendoidcl 40771 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
| 80 | 15 | oveqd 7448 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r‘𝐷)𝑠)) |
| 81 | 80 | adantr 480 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r‘𝐷)𝑠)) |
| 82 | | simpl 482 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 83 | 79 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → ( I ↾ 𝑇) ∈ 𝐸) |
| 84 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → 𝑠 ∈ 𝐸) |
| 85 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ 𝑠 ∈ 𝐸)) → (( I ↾ 𝑇)(.r‘𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠)) |
| 86 | 82, 83, 84, 85 | syl12anc 837 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (( I ↾ 𝑇)(.r‘𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠)) |
| 87 | 1, 2, 3 | tendo1mul 40772 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (( I ↾ 𝑇) ∘ 𝑠) = 𝑠) |
| 88 | 81, 86, 87 | 3eqtrd 2781 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (( I ↾ 𝑇) + 𝑠) = 𝑠) |
| 89 | 15 | oveqd 7448 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r‘𝐷)( I ↾ 𝑇))) |
| 90 | 89 | adantr 480 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r‘𝐷)( I ↾ 𝑇))) |
| 91 | 1, 2, 3, 4, 13 | erngmul 40808 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑠(.r‘𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇))) |
| 92 | 82, 84, 83, 91 | syl12anc 837 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠(.r‘𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇))) |
| 93 | 1, 2, 3 | tendo1mulr 40773 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠 ∘ ( I ↾ 𝑇)) = 𝑠) |
| 94 | 90, 92, 93 | 3eqtrd 2781 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠 + ( I ↾ 𝑇)) = 𝑠) |
| 95 | 7, 11, 15, 19, 26, 54, 68, 78, 79, 88, 94 | isringd 20288 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) |