Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3 Structured version   Visualization version   GIF version

Theorem erngdvlem3 38012
Description: Lemma for eringring 38014. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
ernggrp.h 𝐻 = (LHyp‘𝐾)
ernggrp.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erngdv.b 𝐵 = (Base‘𝐾)
erngdv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngdv.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngdv.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
erngdv.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erngdv.i 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
Assertion
Ref Expression
erngdvlem3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   + (𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   0 (𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem3
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 erngdv.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngdv.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2826 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase 37823 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2832 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 eqid 2826 . . . 4 (+g𝐷) = (+g𝐷)
91, 2, 3, 4, 8erngfplus 37824 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
10 erngdv.p . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
119, 10syl6reqr 2880 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
12 eqid 2826 . . . 4 (.r𝐷) = (.r𝐷)
131, 2, 3, 4, 12erngfmul 37827 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏)))
14 erngrnglem.m . . 3 + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
1513, 14syl6reqr 2880 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (.r𝐷))
16 erngdv.b . . 3 𝐵 = (Base‘𝐾)
17 erngdv.o . . 3 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
18 erngdv.i . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
191, 4, 16, 2, 3, 10, 17, 18erngdvlem1 38010 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
2015oveqd 7167 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
21203ad2ant1 1127 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
221, 2, 3, 4, 12erngmul 37828 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
23223impb 1109 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
2421, 23eqtrd 2861 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) = (𝑠𝑡))
251, 3tendococl 37794 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
2624, 25eqeltrd 2918 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) ∈ 𝐸)
27 coass 6117 . . 3 ((𝑠𝑡) ∘ 𝑢) = (𝑠 ∘ (𝑡𝑢))
2815oveqd 7167 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r𝐷)𝑢))
2928adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r𝐷)𝑢))
30 simpl 483 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31263adant3r3 1178 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) ∈ 𝐸)
32 simpr3 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑢𝐸)
331, 2, 3, 4, 12erngmul 37828 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 + 𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠 + 𝑡)(.r𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢))
3430, 31, 32, 33syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡)(.r𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢))
3515oveqdr 7178 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
36223adantr3 1165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
3735, 36eqtrd 2861 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) = (𝑠𝑡))
3837coeq1d 5731 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) ∘ 𝑢) = ((𝑠𝑡) ∘ 𝑢))
3929, 34, 383eqtrd 2865 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠𝑡) ∘ 𝑢))
4015oveqd 7167 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r𝐷)(𝑡 + 𝑢)))
4140adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r𝐷)(𝑡 + 𝑢)))
42 simpr1 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑠𝐸)
4315oveqdr 7178 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) = (𝑡(.r𝐷)𝑢))
441, 2, 3, 4, 12erngmul 37828 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑡𝑢))
45443adantr1 1163 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑡𝑢))
4643, 45eqtrd 2861 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) = (𝑡𝑢))
471, 3tendococl 37794 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑢) ∈ 𝐸)
48473adant3r1 1176 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑢) ∈ 𝐸)
4946, 48eqeltrd 2918 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) ∈ 𝐸)
501, 2, 3, 4, 12erngmul 37828 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡 + 𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢)))
5130, 42, 49, 50syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢)))
5246coeq2d 5732 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 ∘ (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡𝑢)))
5341, 51, 523eqtrd 2865 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡𝑢)))
5427, 39, 533eqtr4a 2887 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = (𝑠 + (𝑡 + 𝑢)))
551, 2, 3, 10tendodi1 37806 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 ∘ (𝑡𝑃𝑢)) = ((𝑠𝑡)𝑃(𝑠𝑢)))
5615oveqd 7167 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
5756adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
581, 2, 3, 10tendoplcl 37803 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑃𝑢) ∈ 𝐸)
59583adant3r1 1176 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑃𝑢) ∈ 𝐸)
601, 2, 3, 4, 12erngmul 37828 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑃𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6130, 42, 59, 60syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6257, 61eqtrd 2861 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6315oveqdr 7178 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑢) = (𝑠(.r𝐷)𝑢))
641, 2, 3, 4, 12erngmul 37828 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑠𝑢))
65643adantr2 1164 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑠𝑢))
6663, 65eqtrd 2861 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑢) = (𝑠𝑢))
6737, 66oveq12d 7168 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢)) = ((𝑠𝑡)𝑃(𝑠𝑢)))
6855, 62, 673eqtr4d 2871 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢)))
691, 2, 3, 10tendodi2 37807 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) ∘ 𝑢) = ((𝑠𝑢)𝑃(𝑡𝑢)))
7015oveqd 7167 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
7170adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
721, 2, 3, 10tendoplcl 37803 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) ∈ 𝐸)
73723adant3r3 1178 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑃𝑡) ∈ 𝐸)
741, 2, 3, 4, 12erngmul 37828 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑃𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7530, 73, 32, 74syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7671, 75eqtrd 2861 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7766, 46oveq12d 7168 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢)) = ((𝑠𝑢)𝑃(𝑡𝑢)))
7869, 76, 773eqtr4d 2871 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢)))
791, 2, 3tendoidcl 37791 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
8015oveqd 7167 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
8180adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
82 simpl 483 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8379adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
84 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → 𝑠𝐸)
851, 2, 3, 4, 12erngmul 37828 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠))
8682, 83, 84, 85syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠))
871, 2, 3tendo1mul 37792 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) ∘ 𝑠) = 𝑠)
8881, 86, 873eqtrd 2865 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) + 𝑠) = 𝑠)
8915oveqd 7167 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
9089adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
911, 2, 3, 4, 12erngmul 37828 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇)))
9282, 84, 83, 91syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇)))
931, 2, 3tendo1mulr 37793 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 ∘ ( I ↾ 𝑇)) = 𝑠)
9490, 92, 933eqtrd 2865 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 + ( I ↾ 𝑇)) = 𝑠)
957, 11, 15, 19, 26, 54, 68, 78, 79, 88, 94isringd 19271 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  cmpt 5143   I cid 5458  ccnv 5553  cres 5556  ccom 5558  cfv 6354  (class class class)co 7150  cmpo 7152  Basecbs 16478  +gcplusg 16560  .rcmulr 16561  Ringcrg 19233  HLchlt 36372  LHypclh 37006  LTrncltrn 37123  TEndoctendo 37774  EDRingcedring 37775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 35975
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-undef 7935  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-plusg 16573  df-mulr 16574  df-0g 16710  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-mgp 19176  df-ring 19235  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-llines 36520  df-lplanes 36521  df-lvols 36522  df-lines 36523  df-psubsp 36525  df-pmap 36526  df-padd 36818  df-lhyp 37010  df-laut 37011  df-ldil 37126  df-ltrn 37127  df-trl 37181  df-tendo 37777  df-edring 37779
This theorem is referenced by:  erngdvlem4  38013  eringring  38014
  Copyright terms: Public domain W3C validator