Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Structured version   Visualization version   GIF version

Theorem dvalveclem 38321
Description: Lemma for dvalvec 38322. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h 𝐻 = (LHyp‘𝐾)
dvalvec.v 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvalveclem.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvalveclem.a + = (+g𝑈)
dvalveclem.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvalveclem.d 𝐷 = (Scalar‘𝑈)
dvalveclem.b 𝐵 = (Base‘𝐾)
dvalveclem.p = (+g𝐷)
dvalveclem.m × = (.r𝐷)
dvalveclem.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvalveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvalveclem
Dummy variables 𝑡 𝑓 𝑎 𝑏 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvalveclem.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvalvec.v . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
4 eqid 2798 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
51, 2, 3, 4dvavbase 38309 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
65eqcomd 2804 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝑈))
7 dvalveclem.a . . . 4 + = (+g𝑈)
87a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
9 dvalveclem.d . . . 4 𝐷 = (Scalar‘𝑈)
109a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
11 dvalveclem.s . . . 4 · = ( ·𝑠𝑈)
1211a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
13 dvalveclem.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
14 eqid 2798 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 13, 3, 9, 14dvabase 38303 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2804 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvalveclem.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvalveclem.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
211, 2, 13tendoidcl 38065 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
2221, 16eleqtrd 2892 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
23 dvalveclem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
24 eqid 2798 . . . . . . . 8 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2523, 1, 2, 13, 24tendo1ne0 38124 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (𝑓𝑇 ↦ ( I ↾ 𝐵)))
26 eqid 2798 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
271, 26, 3, 9dvasca 38302 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2827fveq2d 6649 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (0g‘((EDRing‘𝐾)‘𝑊)))
29 eqid 2798 . . . . . . . . 9 (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊))
3023, 1, 2, 26, 24, 29erng0g 38290 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3128, 30eqtrd 2833 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3225, 31neeqtrrd 3061 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (0g𝐷))
3321, 21jca 515 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸))
341, 2, 13, 3, 9, 19dvamulr 38308 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
3533, 34mpdan 686 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
36 f1oi 6627 . . . . . . . 8 ( I ↾ 𝑇):𝑇1-1-onto𝑇
37 f1of 6590 . . . . . . . 8 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
38 fcoi2 6527 . . . . . . . 8 (( I ↾ 𝑇):𝑇𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇))
3936, 37, 38mp2b 10 . . . . . . 7 (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)
4035, 39eqtrdi 2849 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇))
4122, 32, 403jca 1125 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)))
421, 26erngdv 38289 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
4327, 42eqeltrd 2890 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
44 eqid 2798 . . . . . . 7 (0g𝐷) = (0g𝐷)
45 eqid 2798 . . . . . . 7 (1r𝐷) = (1r𝐷)
4614, 19, 44, 45drngid2 19511 . . . . . 6 (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4743, 46syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4841, 47mpbid 235 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
4948eqcomd 2804 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
50 drngring 19502 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
5143, 50syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
521, 3dvaabl 38320 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Abel)
53 ablgrp 18903 . . . 4 (𝑈 ∈ Abel → 𝑈 ∈ Grp)
5452, 53syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
551, 2, 13, 3, 11dvavsca 38313 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
56553impb 1112 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) = (𝑠𝑡))
571, 2, 13tendocl 38063 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠𝑡) ∈ 𝑇)
5856, 57eqeltrd 2890 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) ∈ 𝑇)
591, 2, 13tendospdi1 38316 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠‘(𝑡𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
60 simpr1 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → 𝑠𝐸)
611, 2ltrnco 38015 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝑇𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
62613adant3r1 1179 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
6360, 62jca 515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
641, 2, 13, 3, 11dvavsca 38313 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
6563, 64syldan 594 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
66573adant3r3 1181 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑡) ∈ 𝑇)
671, 2, 13tendocl 38063 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑓𝑇) → (𝑠𝑓) ∈ 𝑇)
68673adant3r2 1180 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
6966, 68jca 515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇))
701, 2, 3, 7dvavadd 38311 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7169, 70syldan 594 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7259, 65, 713eqtr4d 2843 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
731, 2, 3, 7dvavadd 38311 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
74733adantr1 1166 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
7574oveq2d 7151 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = (𝑠 · (𝑡𝑓)))
76553adantr3 1168 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
771, 2, 13, 3, 11dvavsca 38313 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
78773adantr2 1167 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
7976, 78oveq12d 7153 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
8072, 75, 793eqtr4d 2843 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
811, 2, 13, 3, 9, 17dvaplusgv 38306 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡)‘𝑓) = ((𝑠𝑓) ∘ (𝑡𝑓)))
821, 2, 13, 3, 9, 17dvafplusg 38304 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
83823ad2ant1 1130 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
8483oveqd 7152 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) = (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡))
85 eqid 2798 . . . . . . . . 9 (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
861, 2, 13, 85tendoplcl 38077 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡) ∈ 𝐸)
8784, 86eqeltrd 2890 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) ∈ 𝐸)
88873adant3r3 1181 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 𝑡) ∈ 𝐸)
89 simpr3 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑓𝑇)
9088, 89jca 515 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) ∈ 𝐸𝑓𝑇))
911, 2, 13, 3, 11dvavsca 38313 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
9290, 91syldan 594 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
93773adantr2 1167 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
941, 2, 13, 3, 11dvavsca 38313 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
95943adantr1 1166 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
9693, 95oveq12d 7153 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) + (𝑡𝑓)))
97673adant3r2 1180 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
981, 2, 13tendospcl 38314 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
99983adant3r1 1179 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
10097, 99jca 515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇))
1011, 2, 3, 7dvavadd 38311 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
102100, 101syldan 594 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10396, 102eqtrd 2833 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10481, 92, 1033eqtr4d 2843 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1051, 2, 13tendospass 38315 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡)‘𝑓) = (𝑠‘(𝑡𝑓)))
1061, 13tendococl 38068 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
1071063adant3r3 1181 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑡) ∈ 𝐸)
108107, 89jca 515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) ∈ 𝐸𝑓𝑇))
1091, 2, 13, 3, 11dvavsca 38313 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
110108, 109syldan 594 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
111 simpr1 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑠𝐸)
112111, 99jca 515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
1131, 2, 13, 3, 11dvavsca 38313 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
114112, 113syldan 594 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
115105, 110, 1143eqtr4d 2843 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = (𝑠 · (𝑡𝑓)))
1161, 2, 13, 3, 9, 19dvamulr 38308 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1171163adantr3 1168 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 × 𝑡) = (𝑠𝑡))
118117oveq1d 7150 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
11995oveq2d 7151 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · (𝑡𝑓)))
120115, 118, 1193eqtr4d 2843 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
12121anim1i 617 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇))
1221, 2, 13, 3, 11dvavsca 38313 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇)) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
123121, 122syldan 594 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
124 fvresi 6912 . . . . 5 (𝑠𝑇 → (( I ↾ 𝑇)‘𝑠) = 𝑠)
125124adantl 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇)‘𝑠) = 𝑠)
126123, 125eqtrd 2833 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 19633 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
1289islvec 19869 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
129127, 43, 128sylanbrc 586 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cmpt 5110   I cid 5424  cres 5521  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095  Abelcabl 18899  1rcur 19244  Ringcrg 19290  DivRingcdr 19495  LModclmod 19627  LVecclvec 19867  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  TEndoctendo 38048  EDRingcedring 38049  DVecAcdveca 38298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lvec 19868  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tgrp 38039  df-tendo 38051  df-edring 38053  df-dveca 38299
This theorem is referenced by:  dvalvec  38322
  Copyright terms: Public domain W3C validator