Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Structured version   Visualization version   GIF version

Theorem dvalveclem 41026
Description: Lemma for dvalvec 41027. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h 𝐻 = (LHyp‘𝐾)
dvalvec.v 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvalveclem.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvalveclem.a + = (+g𝑈)
dvalveclem.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvalveclem.d 𝐷 = (Scalar‘𝑈)
dvalveclem.b 𝐵 = (Base‘𝐾)
dvalveclem.p = (+g𝐷)
dvalveclem.m × = (.r𝐷)
dvalveclem.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvalveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvalveclem
Dummy variables 𝑡 𝑓 𝑎 𝑏 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvalveclem.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvalvec.v . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
4 eqid 2730 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
51, 2, 3, 4dvavbase 41014 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
65eqcomd 2736 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝑈))
7 dvalveclem.a . . . 4 + = (+g𝑈)
87a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
9 dvalveclem.d . . . 4 𝐷 = (Scalar‘𝑈)
109a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
11 dvalveclem.s . . . 4 · = ( ·𝑠𝑈)
1211a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
13 dvalveclem.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
14 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 13, 3, 9, 14dvabase 41008 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2736 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvalveclem.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvalveclem.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
211, 2, 13tendoidcl 40770 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
2221, 16eleqtrd 2831 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
23 dvalveclem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
24 eqid 2730 . . . . . . . 8 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2523, 1, 2, 13, 24tendo1ne0 40829 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (𝑓𝑇 ↦ ( I ↾ 𝐵)))
26 eqid 2730 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
271, 26, 3, 9dvasca 41007 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2827fveq2d 6865 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (0g‘((EDRing‘𝐾)‘𝑊)))
29 eqid 2730 . . . . . . . . 9 (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊))
3023, 1, 2, 26, 24, 29erng0g 40995 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3128, 30eqtrd 2765 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3225, 31neeqtrrd 3000 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (0g𝐷))
3321, 21jca 511 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸))
341, 2, 13, 3, 9, 19dvamulr 41013 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
3533, 34mpdan 687 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
36 f1oi 6841 . . . . . . . 8 ( I ↾ 𝑇):𝑇1-1-onto𝑇
37 f1of 6803 . . . . . . . 8 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
38 fcoi2 6738 . . . . . . . 8 (( I ↾ 𝑇):𝑇𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇))
3936, 37, 38mp2b 10 . . . . . . 7 (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)
4035, 39eqtrdi 2781 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇))
4122, 32, 403jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)))
421, 26erngdv 40994 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
4327, 42eqeltrd 2829 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
44 eqid 2730 . . . . . . 7 (0g𝐷) = (0g𝐷)
45 eqid 2730 . . . . . . 7 (1r𝐷) = (1r𝐷)
4614, 19, 44, 45drngid2 20668 . . . . . 6 (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4743, 46syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4841, 47mpbid 232 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
4948eqcomd 2736 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
50 drngring 20652 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
5143, 50syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
521, 3dvaabl 41025 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Abel)
53 ablgrp 19722 . . . 4 (𝑈 ∈ Abel → 𝑈 ∈ Grp)
5452, 53syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
551, 2, 13, 3, 11dvavsca 41018 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
56553impb 1114 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) = (𝑠𝑡))
571, 2, 13tendocl 40768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠𝑡) ∈ 𝑇)
5856, 57eqeltrd 2829 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) ∈ 𝑇)
591, 2, 13tendospdi1 41021 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠‘(𝑡𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
60 simpr1 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → 𝑠𝐸)
611, 2ltrnco 40720 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝑇𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
62613adant3r1 1183 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
6360, 62jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
641, 2, 13, 3, 11dvavsca 41018 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
6563, 64syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
66573adant3r3 1185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑡) ∈ 𝑇)
671, 2, 13tendocl 40768 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑓𝑇) → (𝑠𝑓) ∈ 𝑇)
68673adant3r2 1184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
6966, 68jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇))
701, 2, 3, 7dvavadd 41016 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7169, 70syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7259, 65, 713eqtr4d 2775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
731, 2, 3, 7dvavadd 41016 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
74733adantr1 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
7574oveq2d 7406 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = (𝑠 · (𝑡𝑓)))
76553adantr3 1172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
771, 2, 13, 3, 11dvavsca 41018 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
78773adantr2 1171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
7976, 78oveq12d 7408 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
8072, 75, 793eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
811, 2, 13, 3, 9, 17dvaplusgv 41011 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡)‘𝑓) = ((𝑠𝑓) ∘ (𝑡𝑓)))
821, 2, 13, 3, 9, 17dvafplusg 41009 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
83823ad2ant1 1133 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
8483oveqd 7407 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) = (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡))
85 eqid 2730 . . . . . . . . 9 (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
861, 2, 13, 85tendoplcl 40782 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡) ∈ 𝐸)
8784, 86eqeltrd 2829 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) ∈ 𝐸)
88873adant3r3 1185 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 𝑡) ∈ 𝐸)
89 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑓𝑇)
9088, 89jca 511 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) ∈ 𝐸𝑓𝑇))
911, 2, 13, 3, 11dvavsca 41018 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
9290, 91syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
93773adantr2 1171 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
941, 2, 13, 3, 11dvavsca 41018 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
95943adantr1 1170 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
9693, 95oveq12d 7408 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) + (𝑡𝑓)))
97673adant3r2 1184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
981, 2, 13tendospcl 41019 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
99983adant3r1 1183 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
10097, 99jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇))
1011, 2, 3, 7dvavadd 41016 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
102100, 101syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10396, 102eqtrd 2765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10481, 92, 1033eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1051, 2, 13tendospass 41020 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡)‘𝑓) = (𝑠‘(𝑡𝑓)))
1061, 13tendococl 40773 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
1071063adant3r3 1185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑡) ∈ 𝐸)
108107, 89jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) ∈ 𝐸𝑓𝑇))
1091, 2, 13, 3, 11dvavsca 41018 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
110108, 109syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
111 simpr1 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑠𝐸)
112111, 99jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
1131, 2, 13, 3, 11dvavsca 41018 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
114112, 113syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
115105, 110, 1143eqtr4d 2775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = (𝑠 · (𝑡𝑓)))
1161, 2, 13, 3, 9, 19dvamulr 41013 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1171163adantr3 1172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 × 𝑡) = (𝑠𝑡))
118117oveq1d 7405 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
11995oveq2d 7406 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · (𝑡𝑓)))
120115, 118, 1193eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
12121anim1i 615 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇))
1221, 2, 13, 3, 11dvavsca 41018 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇)) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
123121, 122syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
124 fvresi 7150 . . . . 5 (𝑠𝑇 → (( I ↾ 𝑇)‘𝑠) = 𝑠)
125124adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇)‘𝑠) = 𝑠)
126123, 125eqtrd 2765 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 20779 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
1289islvec 21018 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
129127, 43, 128sylanbrc 583 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cmpt 5191   I cid 5535  cres 5643  ccom 5645  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Grpcgrp 18872  Abelcabl 19718  1rcur 20097  Ringcrg 20149  DivRingcdr 20645  LModclmod 20773  LVecclvec 21016  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  EDRingcedring 40754  DVecAcdveca 41003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lvec 21017  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004
This theorem is referenced by:  dvalvec  41027
  Copyright terms: Public domain W3C validator