Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Structured version   Visualization version   GIF version

Theorem dvalveclem 40982
Description: Lemma for dvalvec 40983. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h 𝐻 = (LHyp‘𝐾)
dvalvec.v 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvalveclem.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvalveclem.a + = (+g𝑈)
dvalveclem.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvalveclem.d 𝐷 = (Scalar‘𝑈)
dvalveclem.b 𝐵 = (Base‘𝐾)
dvalveclem.p = (+g𝐷)
dvalveclem.m × = (.r𝐷)
dvalveclem.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvalveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvalveclem
Dummy variables 𝑡 𝑓 𝑎 𝑏 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvalveclem.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvalvec.v . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
4 eqid 2740 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
51, 2, 3, 4dvavbase 40970 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
65eqcomd 2746 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝑈))
7 dvalveclem.a . . . 4 + = (+g𝑈)
87a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
9 dvalveclem.d . . . 4 𝐷 = (Scalar‘𝑈)
109a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
11 dvalveclem.s . . . 4 · = ( ·𝑠𝑈)
1211a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
13 dvalveclem.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
14 eqid 2740 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 13, 3, 9, 14dvabase 40964 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2746 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvalveclem.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvalveclem.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
211, 2, 13tendoidcl 40726 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
2221, 16eleqtrd 2846 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
23 dvalveclem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
24 eqid 2740 . . . . . . . 8 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2523, 1, 2, 13, 24tendo1ne0 40785 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (𝑓𝑇 ↦ ( I ↾ 𝐵)))
26 eqid 2740 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
271, 26, 3, 9dvasca 40963 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2827fveq2d 6924 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (0g‘((EDRing‘𝐾)‘𝑊)))
29 eqid 2740 . . . . . . . . 9 (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊))
3023, 1, 2, 26, 24, 29erng0g 40951 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3128, 30eqtrd 2780 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3225, 31neeqtrrd 3021 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (0g𝐷))
3321, 21jca 511 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸))
341, 2, 13, 3, 9, 19dvamulr 40969 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
3533, 34mpdan 686 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
36 f1oi 6900 . . . . . . . 8 ( I ↾ 𝑇):𝑇1-1-onto𝑇
37 f1of 6862 . . . . . . . 8 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
38 fcoi2 6796 . . . . . . . 8 (( I ↾ 𝑇):𝑇𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇))
3936, 37, 38mp2b 10 . . . . . . 7 (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)
4035, 39eqtrdi 2796 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇))
4122, 32, 403jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)))
421, 26erngdv 40950 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
4327, 42eqeltrd 2844 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
44 eqid 2740 . . . . . . 7 (0g𝐷) = (0g𝐷)
45 eqid 2740 . . . . . . 7 (1r𝐷) = (1r𝐷)
4614, 19, 44, 45drngid2 20774 . . . . . 6 (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4743, 46syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4841, 47mpbid 232 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
4948eqcomd 2746 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
50 drngring 20758 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
5143, 50syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
521, 3dvaabl 40981 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Abel)
53 ablgrp 19827 . . . 4 (𝑈 ∈ Abel → 𝑈 ∈ Grp)
5452, 53syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
551, 2, 13, 3, 11dvavsca 40974 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
56553impb 1115 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) = (𝑠𝑡))
571, 2, 13tendocl 40724 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠𝑡) ∈ 𝑇)
5856, 57eqeltrd 2844 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) ∈ 𝑇)
591, 2, 13tendospdi1 40977 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠‘(𝑡𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
60 simpr1 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → 𝑠𝐸)
611, 2ltrnco 40676 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝑇𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
62613adant3r1 1182 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
6360, 62jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
641, 2, 13, 3, 11dvavsca 40974 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
6563, 64syldan 590 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
66573adant3r3 1184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑡) ∈ 𝑇)
671, 2, 13tendocl 40724 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑓𝑇) → (𝑠𝑓) ∈ 𝑇)
68673adant3r2 1183 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
6966, 68jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇))
701, 2, 3, 7dvavadd 40972 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7169, 70syldan 590 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7259, 65, 713eqtr4d 2790 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
731, 2, 3, 7dvavadd 40972 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
74733adantr1 1169 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
7574oveq2d 7464 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = (𝑠 · (𝑡𝑓)))
76553adantr3 1171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
771, 2, 13, 3, 11dvavsca 40974 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
78773adantr2 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
7976, 78oveq12d 7466 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
8072, 75, 793eqtr4d 2790 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
811, 2, 13, 3, 9, 17dvaplusgv 40967 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡)‘𝑓) = ((𝑠𝑓) ∘ (𝑡𝑓)))
821, 2, 13, 3, 9, 17dvafplusg 40965 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
83823ad2ant1 1133 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
8483oveqd 7465 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) = (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡))
85 eqid 2740 . . . . . . . . 9 (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
861, 2, 13, 85tendoplcl 40738 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡) ∈ 𝐸)
8784, 86eqeltrd 2844 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) ∈ 𝐸)
88873adant3r3 1184 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 𝑡) ∈ 𝐸)
89 simpr3 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑓𝑇)
9088, 89jca 511 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) ∈ 𝐸𝑓𝑇))
911, 2, 13, 3, 11dvavsca 40974 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
9290, 91syldan 590 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
93773adantr2 1170 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
941, 2, 13, 3, 11dvavsca 40974 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
95943adantr1 1169 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
9693, 95oveq12d 7466 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) + (𝑡𝑓)))
97673adant3r2 1183 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
981, 2, 13tendospcl 40975 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
99983adant3r1 1182 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
10097, 99jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇))
1011, 2, 3, 7dvavadd 40972 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
102100, 101syldan 590 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10396, 102eqtrd 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10481, 92, 1033eqtr4d 2790 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1051, 2, 13tendospass 40976 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡)‘𝑓) = (𝑠‘(𝑡𝑓)))
1061, 13tendococl 40729 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
1071063adant3r3 1184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑡) ∈ 𝐸)
108107, 89jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) ∈ 𝐸𝑓𝑇))
1091, 2, 13, 3, 11dvavsca 40974 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
110108, 109syldan 590 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
111 simpr1 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑠𝐸)
112111, 99jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
1131, 2, 13, 3, 11dvavsca 40974 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
114112, 113syldan 590 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
115105, 110, 1143eqtr4d 2790 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = (𝑠 · (𝑡𝑓)))
1161, 2, 13, 3, 9, 19dvamulr 40969 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1171163adantr3 1171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 × 𝑡) = (𝑠𝑡))
118117oveq1d 7463 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
11995oveq2d 7464 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · (𝑡𝑓)))
120115, 118, 1193eqtr4d 2790 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
12121anim1i 614 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇))
1221, 2, 13, 3, 11dvavsca 40974 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇)) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
123121, 122syldan 590 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
124 fvresi 7207 . . . . 5 (𝑠𝑇 → (( I ↾ 𝑇)‘𝑠) = 𝑠)
125124adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇)‘𝑠) = 𝑠)
126123, 125eqtrd 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 20886 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
1289islvec 21126 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
129127, 43, 128sylanbrc 582 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cmpt 5249   I cid 5592  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  Grpcgrp 18973  Abelcabl 19823  1rcur 20208  Ringcrg 20260  DivRingcdr 20751  LModclmod 20880  LVecclvec 21124  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709  EDRingcedring 40710  DVecAcdveca 40959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-lmod 20882  df-lvec 21125  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tgrp 40700  df-tendo 40712  df-edring 40714  df-dveca 40960
This theorem is referenced by:  dvalvec  40983
  Copyright terms: Public domain W3C validator