Proof of Theorem pexmidlem6N
Step | Hyp | Ref
| Expression |
1 | | pexmidlem.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
2 | | pexmidlem.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
3 | | pexmidlem.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | pexmidlem.p |
. . . . . . . 8
⊢ + =
(+𝑃‘𝐾) |
5 | | pexmidlem.o |
. . . . . . . 8
⊢ ⊥ =
(⊥𝑃‘𝐾) |
6 | | pexmidlem.m |
. . . . . . . 8
⊢ 𝑀 = (𝑋 + {𝑝}) |
7 | 1, 2, 3, 4, 5, 6 | pexmidlem5N 37915 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥
‘𝑋) ∩ 𝑀) = ∅) |
8 | 7 | 3adantr1 1167 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥
‘𝑋) ∩ 𝑀) = ∅) |
9 | 8 | fveq2d 6760 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑀)) = ( ⊥
‘∅)) |
10 | | simpl1 1189 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝐾 ∈ HL) |
11 | 3, 5 | pol0N 37850 |
. . . . . 6
⊢ (𝐾 ∈ HL → ( ⊥
‘∅) = 𝐴) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘∅) =
𝐴) |
13 | 9, 12 | eqtrd 2778 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑀)) = 𝐴) |
14 | 13 | ineq1d 4142 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥
‘(( ⊥ ‘𝑋) ∩ 𝑀)) ∩ 𝑀) = (𝐴 ∩ 𝑀)) |
15 | | simpl2 1190 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ 𝐴) |
16 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ 𝐴) |
17 | 16 | snssd 4739 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → {𝑝} ⊆ 𝐴) |
18 | 3, 4 | paddssat 37755 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴) → (𝑋 + {𝑝}) ⊆ 𝐴) |
19 | 10, 15, 17, 18 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 + {𝑝}) ⊆ 𝐴) |
20 | 6, 19 | eqsstrid 3965 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ⊆ 𝐴) |
21 | 10, 15, 20 | 3jca 1126 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑀 ⊆ 𝐴)) |
22 | 3, 4 | sspadd1 37756 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + {𝑝})) |
23 | 10, 15, 17, 22 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ (𝑋 + {𝑝})) |
24 | 23, 6 | sseqtrrdi 3968 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ 𝑀) |
25 | | simpr1 1192 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) |
26 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(PSubCl‘𝐾) =
(PSubCl‘𝐾) |
27 | 3, 5, 26 | ispsubclN 37878 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋))) |
28 | 10, 27 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋))) |
29 | 15, 25, 28 | mpbir2and 709 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ∈ (PSubCl‘𝐾)) |
30 | 3, 4, 26 | paddatclN 37890 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (PSubCl‘𝐾) ∧ 𝑝 ∈ 𝐴) → (𝑋 + {𝑝}) ∈ (PSubCl‘𝐾)) |
31 | 10, 29, 16, 30 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 + {𝑝}) ∈ (PSubCl‘𝐾)) |
32 | 6, 31 | eqeltrid 2843 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ∈ (PSubCl‘𝐾)) |
33 | 5, 26 | psubcli2N 37880 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑀 ∈ (PSubCl‘𝐾)) → ( ⊥ ‘( ⊥
‘𝑀)) = 𝑀) |
34 | 10, 32, 33 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘( ⊥
‘𝑀)) = 𝑀) |
35 | 24, 34 | jca 511 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 ⊆ 𝑀 ∧ ( ⊥ ‘( ⊥
‘𝑀)) = 𝑀)) |
36 | 3, 5 | poml4N 37894 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑀 ⊆ 𝐴) → ((𝑋 ⊆ 𝑀 ∧ ( ⊥ ‘( ⊥
‘𝑀)) = 𝑀) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑀)) ∩ 𝑀) = ( ⊥ ‘( ⊥
‘𝑋)))) |
37 | 21, 35, 36 | sylc 65 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥
‘(( ⊥ ‘𝑋) ∩ 𝑀)) ∩ 𝑀) = ( ⊥ ‘( ⊥
‘𝑋))) |
38 | | sseqin2 4146 |
. . . 4
⊢ (𝑀 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑀) = 𝑀) |
39 | 20, 38 | sylib 217 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝐴 ∩ 𝑀) = 𝑀) |
40 | 14, 37, 39 | 3eqtr3rd 2787 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 = ( ⊥ ‘( ⊥
‘𝑋))) |
41 | 40, 25 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 = 𝑋) |