Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem6N Structured version   Visualization version   GIF version

Theorem pexmidlem6N 37144
Description: Lemma for pexmidN 37138. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem6N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀 = 𝑋)

Proof of Theorem pexmidlem6N
StepHypRef Expression
1 pexmidlem.l . . . . . . . 8 = (le‘𝐾)
2 pexmidlem.j . . . . . . . 8 = (join‘𝐾)
3 pexmidlem.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 pexmidlem.p . . . . . . . 8 + = (+𝑃𝐾)
5 pexmidlem.o . . . . . . . 8 = (⊥𝑃𝐾)
6 pexmidlem.m . . . . . . . 8 𝑀 = (𝑋 + {𝑝})
71, 2, 3, 4, 5, 6pexmidlem5N 37143 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)
873adantr1 1165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)
98fveq2d 6648 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘(( 𝑋) ∩ 𝑀)) = ( ‘∅))
10 simpl1 1187 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝐾 ∈ HL)
113, 5pol0N 37078 . . . . . 6 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘∅) = 𝐴)
139, 12eqtrd 2855 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘(( 𝑋) ∩ 𝑀)) = 𝐴)
1413ineq1d 4164 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( ‘(( 𝑋) ∩ 𝑀)) ∩ 𝑀) = (𝐴𝑀))
15 simpl2 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝐴)
16 simpl3 1189 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝐴)
1716snssd 4716 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → {𝑝} ⊆ 𝐴)
183, 4paddssat 36983 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ {𝑝} ⊆ 𝐴) → (𝑋 + {𝑝}) ⊆ 𝐴)
1910, 15, 17, 18syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) ⊆ 𝐴)
206, 19eqsstrid 3991 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀𝐴)
2110, 15, 203jca 1124 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑀𝐴))
223, 4sspadd1 36984 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ {𝑝} ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + {𝑝}))
2310, 15, 17, 22syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ⊆ (𝑋 + {𝑝}))
2423, 6sseqtrrdi 3994 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝑀)
25 simpr1 1190 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘( 𝑋)) = 𝑋)
26 eqid 2820 . . . . . . . . . . 11 (PSubCl‘𝐾) = (PSubCl‘𝐾)
273, 5, 26ispsubclN 37106 . . . . . . . . . 10 (𝐾 ∈ HL → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
2810, 27syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
2915, 25, 28mpbir2and 711 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ∈ (PSubCl‘𝐾))
303, 4, 26paddatclN 37118 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ∈ (PSubCl‘𝐾) ∧ 𝑝𝐴) → (𝑋 + {𝑝}) ∈ (PSubCl‘𝐾))
3110, 29, 16, 30syl3anc 1367 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) ∈ (PSubCl‘𝐾))
326, 31eqeltrid 2915 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀 ∈ (PSubCl‘𝐾))
335, 26psubcli2N 37108 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑀 ∈ (PSubCl‘𝐾)) → ( ‘( 𝑀)) = 𝑀)
3410, 32, 33syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘( 𝑀)) = 𝑀)
3524, 34jca 514 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋𝑀 ∧ ( ‘( 𝑀)) = 𝑀))
363, 5poml4N 37122 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑀𝐴) → ((𝑋𝑀 ∧ ( ‘( 𝑀)) = 𝑀) → (( ‘(( 𝑋) ∩ 𝑀)) ∩ 𝑀) = ( ‘( 𝑋))))
3721, 35, 36sylc 65 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( ‘(( 𝑋) ∩ 𝑀)) ∩ 𝑀) = ( ‘( 𝑋)))
38 sseqin2 4168 . . . 4 (𝑀𝐴 ↔ (𝐴𝑀) = 𝑀)
3920, 38sylib 220 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝐴𝑀) = 𝑀)
4014, 37, 393eqtr3rd 2864 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀 = ( ‘( 𝑋)))
4140, 25eqtrd 2855 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3006  cin 3911  wss 3912  c0 4267  {csn 4541  cfv 6329  (class class class)co 7131  lecple 16548  joincjn 17530  Atomscatm 36432  HLchlt 36519  +𝑃cpadd 36964  𝑃cpolN 37071  PSubClcpscN 37103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-riotaBAD 36122
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4813  df-iun 4895  df-iin 4896  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5434  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-1st 7665  df-2nd 7666  df-undef 7915  df-proset 17514  df-poset 17532  df-plt 17544  df-lub 17560  df-glb 17561  df-join 17562  df-meet 17563  df-p0 17625  df-p1 17626  df-lat 17632  df-clat 17694  df-oposet 36345  df-ol 36347  df-oml 36348  df-covers 36435  df-ats 36436  df-atl 36467  df-cvlat 36491  df-hlat 36520  df-psubsp 36672  df-pmap 36673  df-padd 36965  df-polarityN 37072  df-psubclN 37104
This theorem is referenced by:  pexmidlem8N  37146
  Copyright terms: Public domain W3C validator