MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldiv Structured version   Visualization version   GIF version

Theorem divmuldiv 11889
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
divmuldiv (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))

Proof of Theorem divmuldiv
StepHypRef Expression
1 3anass 1094 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ↔ (𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)))
2 3anass 1094 . . 3 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) ↔ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)))
3 divcl 11850 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
4 divcl 11850 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℂ)
5 mulcl 11159 . . . . . 6 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
63, 4, 5syl2an 596 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
7 mulcl 11159 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
87ad2ant2r 747 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
983adantr1 1170 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
1093adantl1 1167 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
11 mulne0 11827 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
12113adantr1 1170 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
13123adantl1 1167 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
14 divcan3 11870 . . . . 5 ((((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ ∧ (𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) ≠ 0) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
156, 10, 13, 14syl3anc 1373 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
16 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ∈ ℂ)
1716, 3jca 511 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ))
18 simp2 1137 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℂ)
1918, 4jca 511 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ))
20 mul4 11349 . . . . . . 7 (((𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
2117, 19, 20syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
22 divcan2 11852 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 · (𝐴 / 𝐶)) = 𝐴)
23 divcan2 11852 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 · (𝐵 / 𝐷)) = 𝐵)
2422, 23oveqan12d 7409 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2521, 24eqtr3d 2767 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2625oveq1d 7405 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2715, 26eqtr3d 2767 . . 3 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
281, 2, 27syl2anbr 599 . 2 (((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) ∧ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2928an4s 660 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  0cc0 11075   · cmul 11080   / cdiv 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by:  divdivdiv  11890  divcan5  11891  divmul13  11892  divmul24  11893  divmuldivi  11949  divmuldivd  12006  qmulcl  12933  mulexpz  14074  expaddz  14078  sqdiv  14093  faclbnd2  14263  bcm1k  14287  bcp1n  14288  pythagtriplem16  16808  dvsqrt  26658  dquartlem1  26768  basellem8  27005  dchrvmasumlem1  27413  dchrvmasum2lem  27414  pntlemr  27520  pntlemf  27523  wallispilem4  46073
  Copyright terms: Public domain W3C validator