MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldiv Structured version   Visualization version   GIF version

Theorem divmuldiv 11781
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
divmuldiv (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))

Proof of Theorem divmuldiv
StepHypRef Expression
1 3anass 1095 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ↔ (𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)))
2 3anass 1095 . . 3 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) ↔ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)))
3 divcl 11745 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
4 divcl 11745 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℂ)
5 mulcl 11061 . . . . . 6 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
63, 4, 5syl2an 597 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
7 mulcl 11061 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
87ad2ant2r 745 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
983adantr1 1169 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
1093adantl1 1166 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
11 mulne0 11723 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
12113adantr1 1169 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
13123adantl1 1166 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
14 divcan3 11765 . . . . 5 ((((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ ∧ (𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) ≠ 0) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
156, 10, 13, 14syl3anc 1371 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
16 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ∈ ℂ)
1716, 3jca 513 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ))
18 simp2 1137 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℂ)
1918, 4jca 513 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ))
20 mul4 11249 . . . . . . 7 (((𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
2117, 19, 20syl2an 597 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
22 divcan2 11747 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 · (𝐴 / 𝐶)) = 𝐴)
23 divcan2 11747 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 · (𝐵 / 𝐷)) = 𝐵)
2422, 23oveqan12d 7361 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2521, 24eqtr3d 2779 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2625oveq1d 7357 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2715, 26eqtr3d 2779 . . 3 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
281, 2, 27syl2anbr 600 . 2 (((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) ∧ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2928an4s 658 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941  (class class class)co 7342  cc 10975  0cc0 10977   · cmul 10982   / cdiv 11738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-po 5537  df-so 5538  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739
This theorem is referenced by:  divdivdiv  11782  divcan5  11783  divmul13  11784  divmul24  11785  divmuldivi  11841  divmuldivd  11898  qmulcl  12813  mulexpz  13929  expaddz  13933  sqdiv  13947  faclbnd2  14111  bcm1k  14135  bcp1n  14136  pythagtriplem16  16629  dvsqrt  26001  dquartlem1  26107  basellem8  26343  dchrvmasumlem1  26749  dchrvmasum2lem  26750  pntlemr  26856  pntlemf  26859  wallispilem4  43995
  Copyright terms: Public domain W3C validator