MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldiv Structured version   Visualization version   GIF version

Theorem divmuldiv 11994
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
divmuldiv (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))

Proof of Theorem divmuldiv
StepHypRef Expression
1 3anass 1095 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ↔ (𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)))
2 3anass 1095 . . 3 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) ↔ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)))
3 divcl 11955 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
4 divcl 11955 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℂ)
5 mulcl 11268 . . . . . 6 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
63, 4, 5syl2an 595 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
7 mulcl 11268 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
87ad2ant2r 746 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
983adantr1 1169 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
1093adantl1 1166 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
11 mulne0 11932 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
12113adantr1 1169 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
13123adantl1 1166 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
14 divcan3 11975 . . . . 5 ((((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ ∧ (𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) ≠ 0) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
156, 10, 13, 14syl3anc 1371 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
16 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ∈ ℂ)
1716, 3jca 511 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ))
18 simp2 1137 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℂ)
1918, 4jca 511 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ))
20 mul4 11458 . . . . . . 7 (((𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
2117, 19, 20syl2an 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
22 divcan2 11957 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 · (𝐴 / 𝐶)) = 𝐴)
23 divcan2 11957 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 · (𝐵 / 𝐷)) = 𝐵)
2422, 23oveqan12d 7467 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2521, 24eqtr3d 2782 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2625oveq1d 7463 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2715, 26eqtr3d 2782 . . 3 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
281, 2, 27syl2anbr 598 . 2 (((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) ∧ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2928an4s 659 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184   · cmul 11189   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by:  divdivdiv  11995  divcan5  11996  divmul13  11997  divmul24  11998  divmuldivi  12054  divmuldivd  12111  qmulcl  13032  mulexpz  14153  expaddz  14157  sqdiv  14171  faclbnd2  14340  bcm1k  14364  bcp1n  14365  pythagtriplem16  16877  dvsqrt  26802  dquartlem1  26912  basellem8  27149  dchrvmasumlem1  27557  dchrvmasum2lem  27558  pntlemr  27664  pntlemf  27667  wallispilem4  45989
  Copyright terms: Public domain W3C validator