![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restidsing | Structured version Visualization version GIF version |
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
Ref | Expression |
---|---|
restidsing | ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5662 | . 2 ⊢ Rel ( I ↾ {𝐴}) | |
2 | relxp 5360 | . 2 ⊢ Rel ({𝐴} × {𝐴}) | |
3 | velsn 4413 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | velsn 4413 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
5 | 3, 4 | anbi12i 620 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
6 | vex 3417 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 6 | ideq 5507 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
8 | 3, 7 | anbi12i 620 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝑦)) |
9 | eqeq1 2829 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
10 | eqcom 2832 | . . . . . . 7 ⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) | |
11 | 9, 10 | syl6bb 279 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑦 = 𝐴)) |
12 | 11 | pm5.32i 570 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
13 | 8, 12 | bitri 267 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
14 | df-br 4874 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
15 | 14 | anbi2i 616 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
16 | 5, 13, 15 | 3bitr2ri 292 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) |
17 | 6 | opelresi 5637 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
18 | opelxp 5378 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) | |
19 | 16, 17, 18 | 3bitr4i 295 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴})) |
20 | 1, 2, 19 | eqrelriiv 5448 | 1 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1656 ∈ wcel 2164 {csn 4397 〈cop 4403 class class class wbr 4873 I cid 5249 × cxp 5340 ↾ cres 5344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-res 5354 |
This theorem is referenced by: residpr 6659 grp1inv 17877 psgnsn 18291 m1detdiag 20771 |
Copyright terms: Public domain | W3C validator |