MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restidsing Structured version   Visualization version   GIF version

Theorem restidsing 5962
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.)
Assertion
Ref Expression
restidsing ( I ↾ {𝐴}) = ({𝐴} × {𝐴})

Proof of Theorem restidsing
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5920 . 2 Rel ( I ↾ {𝐴})
2 relxp 5607 . 2 Rel ({𝐴} × {𝐴})
3 velsn 4577 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 velsn 4577 . . . . 5 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
53, 4anbi12i 627 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
6 vex 3436 . . . . . . 7 𝑦 ∈ V
76ideq 5761 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
83, 7anbi12i 627 . . . . 5 ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴𝑥 = 𝑦))
9 eqeq1 2742 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
10 eqcom 2745 . . . . . . 7 (𝐴 = 𝑦𝑦 = 𝐴)
119, 10bitrdi 287 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑦𝑦 = 𝐴))
1211pm5.32i 575 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝑦) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
138, 12bitri 274 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
14 df-br 5075 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
1514anbi2i 623 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
165, 13, 153bitr2ri 300 . . 3 ((𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}))
176opelresi 5899 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
18 opelxp 5625 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}))
1916, 17, 183bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴}))
201, 2, 19eqrelriiv 5700 1 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {csn 4561  cop 4567   class class class wbr 5074   I cid 5488   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  residpr  7015  grp1inv  18683  psgnsn  19128  m1detdiag  21746
  Copyright terms: Public domain W3C validator