MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restidsing Structured version   Visualization version   GIF version

Theorem restidsing 6052
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.)
Assertion
Ref Expression
restidsing ( I ↾ {𝐴}) = ({𝐴} × {𝐴})

Proof of Theorem restidsing
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6010 . 2 Rel ( I ↾ {𝐴})
2 relxp 5694 . 2 Rel ({𝐴} × {𝐴})
3 velsn 4644 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 velsn 4644 . . . . 5 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
53, 4anbi12i 627 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
6 vex 3478 . . . . . . 7 𝑦 ∈ V
76ideq 5852 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
83, 7anbi12i 627 . . . . 5 ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴𝑥 = 𝑦))
9 eqeq1 2736 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
10 eqcom 2739 . . . . . . 7 (𝐴 = 𝑦𝑦 = 𝐴)
119, 10bitrdi 286 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑦𝑦 = 𝐴))
1211pm5.32i 575 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝑦) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
138, 12bitri 274 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
14 df-br 5149 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
1514anbi2i 623 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
165, 13, 153bitr2ri 299 . . 3 ((𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}))
176opelresi 5989 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
18 opelxp 5712 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}))
1916, 17, 183bitr4i 302 . 2 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴}))
201, 2, 19eqrelriiv 5790 1 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  {csn 4628  cop 4634   class class class wbr 5148   I cid 5573   × cxp 5674  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-res 5688
This theorem is referenced by:  residpr  7140  grp1inv  18930  psgnsn  19387  m1detdiag  22098
  Copyright terms: Public domain W3C validator