| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restidsing | Structured version Visualization version GIF version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| restidsing | ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5951 | . 2 ⊢ Rel ( I ↾ {𝐴}) | |
| 2 | relxp 5632 | . 2 ⊢ Rel ({𝐴} × {𝐴}) | |
| 3 | velsn 4590 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | velsn 4590 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 5 | 3, 4 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 6 | vex 3438 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | 6 | ideq 5790 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 8 | 3, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝑦)) |
| 9 | eqeq1 2734 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 10 | eqcom 2737 | . . . . . . 7 ⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) | |
| 11 | 9, 10 | bitrdi 287 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑦 = 𝐴)) |
| 12 | 11 | pm5.32i 574 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 13 | 8, 12 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 14 | df-br 5090 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 15 | 14 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥 I 𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
| 16 | 5, 13, 15 | 3bitr2ri 300 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) |
| 17 | 6 | opelresi 5933 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 〈𝑥, 𝑦〉 ∈ I )) |
| 18 | opelxp 5650 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) | |
| 19 | 16, 17, 18 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴})) |
| 20 | 1, 2, 19 | eqrelriiv 5728 | 1 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 {csn 4574 〈cop 4580 class class class wbr 5089 I cid 5508 × cxp 5612 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-res 5626 |
| This theorem is referenced by: residpr 7071 grp1inv 18953 psgnsn 19425 m1detdiag 22505 |
| Copyright terms: Public domain | W3C validator |